Mathematics and Statistics  

Mathematics and Statistics is an international peer-reviewed journal that publishes original and high-quality research papers in all areas of mathematics and statistics. As an important academic exchange platform, scientists and researchers can know the most up-to-date academic trends and seek valuable primary sources for reference.


ISSN: 2332-2071 (Print)

ISSN: 2332-2144 (Online)

Contact Us: ms.editor@hrpub.org or editor@hrpub.org

Website: https://www.hrpub.org/journals/jour_info.php?id=34


Archive

Volume 12   2024
Vol.12 No.1Vol.12 No.2Vol.12 No.3Vol.12 No.4Vol.12 No.5Vol.12 No.6
Volume 11   2023
Vol.11 No.1Vol.11 No.2Vol.11 No.3Vol.11 No.4Vol.11 No.5Vol.11 No.6
Volume 10   2022
Vol.10 No.1Vol.10 No.2Vol.10 No.3Vol.10 No.4Vol.10 No.5Vol.10 No.6
Volume 9   2021
Vol.9 No.1Vol.9 No.2Vol.9 No.3Vol.9 No.4Vol.9 No.5Vol.9 No.6
Volume 8   2020
Vol.8 No.1Vol.8 No.2Vol.8 No.2AVol.8 No.3Vol.8 No.4Vol.8 No.5
Vol.8 No.6
Volume 7   2019
Vol.7 No.1Vol.7 No.2Vol.7 No.3Vol.7 No.4Vol.7 No.4AVol.7 No.5
Volume 6   2018
Vol.6 No.1Vol.6 No.2Vol.6 No.3Vol.6 No.4
Volume 5   2017
Vol.5 No.1Vol.5 No.2Vol.5 No.3Vol.5 No.4
Volume 4   2016
Vol.4 No.1Vol.4 No.2Vol.4 No.3Vol.4 No.4
Volume 3   2015
Vol.3 No.1Vol.3 No.2Vol.3 No.3Vol.3 No.4Vol.3 No.5Vol.3 No.6
Volume 2   2014
Vol.2 No.1Vol.2 No.2Vol.2 No.3Vol.2 No.4Vol.2 No.5Vol.2 No.6
Vol.2 No.7Vol.2 No.8
Volume 1   2013
Vol.1 No.1Vol.1 No.2Vol.1 No.3Vol.1 No.4

Vol 3(Feb, 2015) No 1

Criteria for the Existence of Common Points of Spectra of Several Operator Pencils

R. M. Dzhabarzadeh

[Abstract] [Full Text] [Full Article - PDF] pp. 1 - 6

DOI: 10.13189/ms.2015.030101

A Note on Generalized Jordan Derivations in Semiprime Rings

Mehsin Jabel Atteya

[Abstract] [Full Text] [Full Article - PDF] pp. 7 - 9

DOI: 10.13189/ms.2015.030102

Derivations Acting as Homomorphisms and as Anti-homomorphisms in σ-Lie Ideals of σ-Prime Gamma Rings

A. C. Paul, S. Chakraborty

[Abstract] [Full Text] [Full Article - PDF] pp. 10 - 15

DOI: 10.13189/ms.2015.030103

On the Weak Grothendieck Group of a Morphic Ring and its Representations

Sorokin O.S.

[Abstract] [Full Text] [Full Article - PDF] pp. 16 - 24

DOI: 10.13189/ms.2015.030104