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Abstract Due to the Mittag-Leffler function's crucial
contribution to solving the fractional integral and
differential equations, academics have begun to pay more
attention to this function. The Mittag-Leffler function
naturally appears in the solutions of fractional-order
differential and integral equations, particularly in the
studies of fractional generalization of kinetic equations,
random walks, Levy flights, super-diffusive transport, and
complex systems. As an example, it is possible to find
certain properties of the Mittag-Leffler functions and
generalized Mittag-Leffler functions [4,5]. We consider an
additional generalization in this study, Eg‘ﬁ (z), given by
Prabhakar [6,7]. We normalize the later to deduce [EZ‘ 5(2)

in order to explore the inclusion results in a well-known
class of analytic functions, namely k — ST [A,B] and
k —UCV[A,B] , k -uniformly Janowski starlike and
k-Janowski convex functions, respectively. Recently,
researches on the theory of univalent functions emphasize
the crucial role of implementing distributions of random
variables such as the negative binomial distribution, the
geometric distribution, the hypergeometric distribution,
and in this study, the focus is on the Poisson distribution
associated with the convolution (Hadamard product) that is
applied to define and explore the inclusion results of the

followings: IZ:? (2), Jgpfand the integral operator g;’}g’.
Furthermore, some results of special cases will be also
investigated.

Keywords k -Uniformly Janowski Star-like,
k-Janowski Convex Functions, Mittag-Leffler Function

Classification of Mathematics (2010): 30C45.

1. Introduction

In recent years, there has been a lot of interest in random
variable distributions. In statistics and probability theory,
the real variable x and the complex variable z's probability
density functions been crucial. The distributions have so
been thoroughly investigated. Many different types of
distributions, including the negative geometric distribution,
hypergeometric distribution, Poisson distribution, and
binomial distribution, have been developed as a result of
real-world events.

If a random variable's function of probability density is
given by, then the variable x has a Poisson distribution:

-m

fO) =m5x=012,.. (1.1)

For the parameter of the distribution m, the Poisson
distribution started receiving interest in the theory of
univalent functions, firstly by Porwal [8] and then later by
Porwal and Dixit [9] who provided moments and moments’
generating functions with the Mittag-Leffler Poisson
distribution.
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We indicate by A the well-known type of the form
normalized functions

f@) =z+27, a,z", (1.2)

Functions that in the open unit disk analyzers U = i{z €
C:|z| < 1}

We also let T a sub-class of A that includes operations
of the form

(2)=z-Y7, |layl|z", z € U.

(1.3)

Now, we recall the definitions of the classes k —
ST[A,B] and k —UCV[A, B] that were introduced and
studied by Noor and Malik [4].

A function f € A is considered to be a member of the

class of k -Janowski star-like functions. k —
ST[A,B],k=20,—-1 < B < A <1,ifand only if
zf’(z) Zf’(z)
(B-1)=—5—(A-1) (B-1)=——(A-1)
f(2) f(@)
Moy |~ Mo @y 14
(B+1)W—(A+1) (B+1)W—(A+1)

Further, a function f € A is said to be in the class
k-Janowski convex functions UCV[A,B],k=0,—-1<
Bi < A <1, if and only if

') ' @)

B g —4-D C0 T 4Dl )
(zf'@) ('@) T
(B+1) =57 (a+1) (B+1) =7 2 (A+1)
clearly

£(2) € k — UCV[A,B] & zf'(2) € k — ST[A, B].

The above are generalizations of the following special
cases:

(1) k=87[1,-1] =k =871 and k —UCV[1,-1] =
k —UCY, the well-known classes of k starlike and
k-uniformly convex functions respectively, introduced by
Kanas and Wisniowska [6,7 and also 1]

2 k—-8T[1-2y,-1]=k—-S8D[k,y] and k-
UCV[1 - 2y,—1] = k — KXD[k, y], the classes introduced
by Shams et al. in [10].

(3) 0—S8T[A,B] =S*[A,B] and 0—TUCV[A,B] =
C[A, B] the well-known classes of Janowski starlike and
Janowski convex functions respectively, introduced by
Janowski [12].

4 0-8T[1-2y,—-1]=S8"(y) and 0—-TUCV[1—
2y,—1] =C(y) , the well-known classes of starlike
functions of order y(0 <y < 1) and convex functions of
order y(0 <y < 1) respectively, (see [3]).

re+v) _
r'o)

(1)n =nl,

@), =

If f(z) € k —ST[A, B] then

(B+1) Z]f(g) —(A+1)

takes all values from the domain Q;,k = 0 as
Q, ={Ww:Rw>kjlw-1|}

={u+iv:u>kw/(u—1)2+v2}

The domain () represents the right half plane for
k = 0; a hyperbola for 0 < k < 1; a parabola for k =1
and an ellipse for k > 1, (see [4]).

A function f €A is said to be in the class
R*(C,D), T € C\i{0},-1 < D < C < 1, if it satisfies the
inequality

fl(z)-1
(C=D)yt=D[f'(z) - 1]

The class above was introduced by Dixit and Pal [13]
providing the below results

Lemma 1.1. [13] If f € R*(C, D) is of the form (1.2),
then

<1, z€eU

a <€ -0 neny gy

The result is sharp for the function
“ (C = D)|z|t™?
f(2) = J; (1 +W)dt, (zeUn
EN\ {1}).

Mittag-Leffler  function E,(z) is

Mittag-Leffler [2] and given by

studied by

E = N —Zn C R 0
“(Z)_; l"(an+1)'(zE » R(a) > 0).

Prabhakar [5, 11] has generalized the Mittag — Leffler
function as follows

NI

T(an+B) n!’
n=0
>0,

ES5(2):= z,B,0 € C; R(a)

here; (6), denotes the familiar Pochhammer symbol
defined as

ifv=0, 6€ C\{0}

1;
_{ 0O0+1)..(0+n—1),if v=n €N,0€ C
n ENo,NO =N U{O},

N={123,..}.
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Since the generalized Mittag-Leftler function E g_ 5(2) doesn’t belong to the family A. Let us consider the following
normalization of the Mittag-Leffler function

IEZ,;;(Z) = r(ﬂ)ZEg,ﬁ(Z)

_ I @)l (B) n
=z+ X Wl @n-1+p) > (1.6)

where z,a, € C; #0,—1,—2,-- and R(B) > 0,R(a) > 0.

Our attention in this paper is only to the cases; where a, § are real-valued and z € U.

The generalized Mittag-Leffler-type Poisson distribution's probability mass function is then given by

mT‘
P(x = r) =0,123, -,
I'(ak + B)ES pm )

in where m>0, >0, and $>0. One can introduce a power series whose coefficients are probabilities of the generalized
Mittag-Leffler-type Poisson distribution series using the normalized version of the Mittag-Leffler function in (1.6), as
follows:

me o~ (@)l (B)m"* n
Hyp (2):= Z+Z AT @M —1) £ FE? ﬁ(m)z ,z€U

To serve our purpose, we also need to define the series

m,0 _ym — 5 _ ' (O)nl(Bym™ "1 n
Iy (Z) =2z ap(Z) =2 - X5, (e 1)+ﬁ)]E9ﬁ(m)Z ,z€U (1.7)

Finally, and by the means of the convolution, we deduce the following operator:

> 2] nF n-1
TF(2) = HIE (@) + f(2) = Z+Z — (agn)_ 1()/2";)15 o €D

2. Inclusion Results of I (z)

To establish our primary findings, we shall require the below given lemmas.
Lemma 2.1. [4] A function f of the form (1.2) is in the class k — ST[A, B], if it satisfies the condition

Yn=2 2k + D -1+ n(B+1) - (A+Dl]lay| < |B-A] @.1)
where —1< B <A<1and k>0.
Lemma 2.2. [4] A function f of the form (1.2) is in the class k — UCV[A, B), if it satisfies the condition
Ymon2tk+1D)(n—D+nB+1)—A+ D|]la,| <|B—A4 2.2)
where —1<B<A<1and k = 0.
In this study, we will assume that until otherwise stated thata,m > 0,k >0 and —-1<B <A< 1.
Theorem 2.3. Let > 1. Then 1]y € k — ST[A,B] if

(@)nI(B) [2k+B+3
nEG pm) L @ ( ap-1(m) — re- 1))

2k+B+3 . n 2.3)
+ [( ) A=-p+EB+A+ 2)] ( ap (M) (9),;(;9))]
< |B- A|
Proof. Given Lemma 2.1 and (2.1), it is sufficient to demonstrate that

[ee]

Ji:= Z RE+1Dn-1D)+nB+1)—(A+1)]]

n=2

(0)T(B)m" !
n!T(a(n—1)+ BEqp

<|B —A|
(m)
We have

()L (B)ym™!
n!T(a(n — 1) + BE ;(m)

]132 REE+Dn-D+nB+1)+A+1)]

n=2
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(), I (Bym"*
n!T(a(n— 1) + BES z(m)

(0),I'()m"
n!T'(an + E)]Eg,ﬁ (m)

[k +B+3)n+(A-2k—-1)]

[Qk+B+3)(n+1) + (A—2k—1)]
(0),I'(B)m"
n!T(an + [)’)IEQ B(m)

@)L (B)m"
n!T(an + B)E, z(m)

[Qk+B+3)n+(B+A+2)]

M8 'i'MS EMS

n

=(ﬂ)§ [(an+ B —1) +(1—B)]

a

~ I

n=1
o

()T (B)m™
+B+4+2) ; n!T(an + B)EG 5 (m)

_ (Zk +B+ 3) i (0),T(B)m"
a - n!T'(an+ p — 1)IE (M)

@) ()M
n!T(an + B)EG 5 (m)

+[(M)(1—ﬁ)+(B+A+2)]Z

_(0).T(B) [2k+B+3( B
TWEml (E“'ﬁ‘l(m) I - 1))

e

1-f)+(B+A+ 2)] <E3,ﬂ(m) - mﬂ

<|B-Al

This completes the evidence for Theorem 2.3.
Theorem 2.4. Let > 2. Then I}y € k —UCV[A,B] if

0),.I 2k+ B+ 3 1
@) (ﬁ)[ +a2+ (Eg,ﬁ-z(m)—m)

n! E? a8 (M)
k+B+3)3—-28)+a(2B+A+2k+5) 0 1
( ? ) (E“'ﬂ—l(m) - ))
Rk+B+3)(1—-8)?% (2B+A+2k+5)(1-p) 0 n!
+ < = + s +BA+ 2)> (Eajﬁ(m) - —(B)nl"([?))]
< |B — 4|
Proof. We consider the same approach of Theorem 2.3 by the means of Lemma 2.2 and (2.2). Here we let
RN ~ ~ ()L (BYm" _
Jpi= Z n(2(k + 1) (= 1)+ In(B + 1)~ (4+ Dl s = T <|B—-Al

n=2

3. Inclusion Results of 335 f

Theorem 3.1. Let § > 1. If f € R*(C, D), then 7304 f € k — UCV[A, B] if

(C=D)|t|()nl'(B) [2k+B+3
n]]Egﬁ(m) [ a ( a,f- 1( ) r(g- 1))

HEEE) a-p @ +ar 2| (Epm -ghg)] Y
< |B-A|

Proof. Using Lemma 2.2 and (2.1) it is enough to verify that
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[ee]

Z n2k+1)(n—1)+n(B+1)—(A+ 1)[]

n=2

(0)L(B)ym"*
n!T(a(n—-1) + ﬁ)[EZ'ﬁ(m)

lay| < |B — A

Now, since f € R*(C, D), in view of Lemma 1.1 the coefficients bound is

la,| < %,n eN\ {1}

Thus, it is sufficient to show that

(0),T(Bym"
n!T'lan—-1) + ﬁ)Ea,B(m)

(€ =D)I|

Z 20k +1)(n—1) + [n(B + 1) — (A + 1)[]
n=2

< |B-Al.

Which is the same approach of the proof of Theorem 2.3, we conclude that 755 f € k — UCV[A, B] if (3.1) holds
true.

4. Inclusion Results of the Integral Operator g’;ﬁ

Following the same previous methods, we can readily deduce the next result
Theorem 4.1. If [ > 1, the integ iral operator follows

z 1;’},;" ®

g;’}if(z): = f dt,z € U,
0

is in k-UCV|[A, B] if the condition of inequality (2.3) is met.
Proof. By the assumption (1.7) we have
N @al Bm" z"
HOEFEDY " T
=2 (g)nr(a(n - 1) + ﬁ)IEa,B(m) n

Now, using (2.1) and Lemma 2.2, the integral operator; Gg's(2) belongs to k — UCV[A, B]; if

(@)L (BYM™1
2(k+1)(n—-1) +n(B+1)—(4A+ 1] 5 < |B —A4|
~ n!T(a(n —1) + BE; z(m)
we conclude that G’y € k — UCV[A, B] if (2.3) holds true.
5. Special Cases
Let A=1—2y,and B = —1 with 0 <y <1 in the above theorems, we receive the following special cases:

Corollary 5.1. Let B > 1. Then I}y € k — SD[k,y] if

OB k1, 1
nE? ;(m)l <E“'ﬁ‘1(m)1 TTE- 11))

+ [(k Z 1) i(1-p)+1- yi] (Eg_ﬁ(m) - m)]
< 1-vy.

Corollary 5.2. Let 8 > 2. Then IZL; €k —KDlk,y] if
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(0)nl'(B) [";’2 ! (Eg,ﬁ—z(m) - ﬁ)

n!E, g(m)
(k+1DH)B-28)+al2—-yv+k). 1
* < a? 1) (Eg'ﬁ‘l(m) “TE- 1))
k+1DA-p)? QR-y+RKA-p) n!
+ < 7 + - +@1- a)) (Eg,,;(m) - —(e)nl“(ﬁ)>]
1-y

Corollary 5.3. Let B > 1. If f € R*(C, D), then .‘72}91‘ € k—XDlk,y] if
C=D)|t|@) L B[k +1/ 4 1
Egp-r(m) —o—=
n!Eqp(m) a ’ rg-1
() -p+ 12 (B2 - )
i(1— — m) — ——————
a AN COWI()
1-vy
Corollary 5.4. Let B > 1. The component operator provided by (4.1) is then in class k; KDlk,y] if the inequality in

<

Corollary 5.1 holds true.

6.

The generalized Mittag-Leffler function has been

nclusion [5] Salah, J. and Darus, M., A note on Generalized
Conclusions Mittag-Leffler function and Application, Far East Journal
of Mathematical Sciences (FJIMS). Vol. 48, no. 1, pp. 3346,
2011.

investigated by the means of Poisson distribution. A
normalized form [Eg,ﬁ(z) has been studied in terms of its [6] S. Kanas and A. Wisniowska, Conic regions and k -

inclusion in the well know subclasses of analytic functions,

uniform convexity, J. Comput. Appl. Math., vol. 105, no.
1-2, pp. 327-336, 1999, DOL

here we have considered k — ST[A, B] and k — 10.1016/80377-0427(99)00018-7.

UCVIA, B]. Sufficient conditions are derived for IZ}B (2),

[7T S. Kanas and A. Wisniowska, Conic domains and starlike

. ,0 . .
‘7g,lﬁf and the integral operator 9;',15 to belong to functions, Rev. Roumaine Math. Pures Appl., vol. 45, pp.
k-Janowski convex and k-uniformly star-like functions. 647-657, 2000.

Lastly, given some A and B parameter values, special cases [8]

S. Porwal, An application of a Poisson distribution series on

are discussed. certain analytic functions, J. Complex Anal., Art. ID

984135, 1-3, 2014.

[9] S. Porwal and K.K. Dixit, On Mittag-Leftler type Poisson
distribution, Afr. Mat., vol. 28, pp. 29-34, DOI:
10.1007/s13370-016-0427-y.

REFERENCES
[10] S. Shams, S.R. Kulkarni, J.M. Jahangiri, Classes of
[1] F. Ronning, Uniformly convex functions and a uniformly starlike and convex functions, Int. J. Math. Math.
corresponding class of starlike functions, Proc. Amer. Math. Sci., vol. 55, pp. 2959-2961, 2004, DOLI:
Soc., vol. 18, no. 1, pp. 189-196, 1993. 10.115/S0161171204402014.

G. M. Mittag-Leffler, Sur la nouvelle fonction E(x), C. R. [11] T. R. Prabhakar, A single integral equation with a

Acad. Sci. Paris, vol. 137, pp. 554-558, 1903. generalized Mittag — Leffler function in the kernel,
Yokohama Math. J. vol. 19, pp. 7-15, 1997.

H. Silverman, Univalent functions with negative

coefficients, Proc. Amer. Math. Soc. Vol. 220, no. 1, pp. [12] W. Janowski, Some extremal problems for certain families

283-289, 1998, DOI: 10.1006/jmaa.1997.5882. of analytic functions, Ann. Polon. Math. Vol. 28, pp.
297-326, 1973.

K.I. Noor, S.N. Malik, On coefficient inequalities of

functions associated with conic domains, Comput. Math. ~ [13] K. K. Dixit and S. K. Pal, On a class of univalent functions

Appl. Vol. 62, no. 5, pp. 2209-2217, 2011. DOI: related to complex order, Indian J. Pure Appl. Math., vol. 26,

10.1016/j.camwa.2011.07.006 no. 9, pp. 889-896, 1995.


https://doi.org/10.1006/jmaa.1997.5882
https://doi.org/10.1016/j.camwa.2011.07.006
https://doi.org/10.1016/S0377-0427(99)00018-7
https://doi.org/10.1007/s13370-016-0427-y

	1. Introduction
	2. Inclusion Results of ,𝑰-𝜶,𝜷-𝒎,𝜽.(𝒛)
	3. Inclusion Results of ,𝓘-𝜶,𝜷-𝒎.𝒇
	4. Inclusion Results of the Integral Operator ,𝓖-𝜶,𝜷-𝒎, 𝜽.
	5. Special Cases
	6. Conclusions
	REFERENCES

