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Abstract This paper introduces a new approach to directly solve a system of two coupled partial differential equations (PDEs) 
subjected to physical conditions describing the diffusion kinetic problem with one delayed neutron precursor concentration in 
Cartesian geometry. In literature, many difficulties arise when dealing with the current model using various numerical/analytical 
approaches. Normally, mathematicians search for simple but effective methods to solve their physical models. This work aims 
to introduce a new approach to directly solve the model under investigation. The present approach suggests to transform the 
given PDEs to a system of linear ordinary differential equations (ODEs). The solution of this system of ODEs is obtained by a 
simple analytical procedure. In addition, the solution of the original system of PDEs is determined in explicit form. The main 
advantage of the current approach is that it avoided the use of any natural transformations such as the Laplace transform in 
the literature. It also gives the solution in a direct manner; hence, the massive computational work of other numerical/analytical 
approaches is avoided. Hence, the proposed method is effective and simpler than those previously published in the literature. 
Moreover, the proposed approach can be further extended and applied to solve other kinds of diffusion kinetic problems.
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1 Introduction

This work considers the coupled PDEs ([1]-[2]):

1

V

∂ϕ

∂t
= D

∂2ϕ

∂x2
+

−
∑
a

+(1− β)ν
∑
f

ϕ(x, t) + λC(x, t), (1)

∂C

∂t
= βν

∑
f

ϕ(x, t)− λC(x, t), (2)
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under the boundary conditions (BCs):

ϕ(0, t) = 0, ϕ(L, t) = 0, t > 0, (3)

ϕ(x, 0) = ϕ0, 0 < x < L, (4)

C(x, 0) =
βν

∑
f

λ
ϕ0, 0 < x < L, (5)

where ϕ(x, t) and C(x, t) represent the neutron flux and the delayed neutron concentration, respectively. In the system (1)-(5),

the included physical quantities/parameters have been described in Refs. ([1]-[2]) and their values are standard/known for the

neutron diffusion system. In addition, this system is of wide applications in particles/nuclear physics which requires accurate

approximation for safety considerations. The literature [1-8] is rich of several approaches such as the General Integral Transform

Technique (GITT) utilized by Ceolin et al. [1]. The authors [1] imposed artificial auxiliary parameter ϵ into the right hand side

of Eq. (2) to deal with the system (1)-(5). Moreover, they considered series expansions for ϕ(x, t) and C(x, t) in terms of

eigenfunctions.

On the other hand, Khaled [2] obtained explicit expressions for ϕ(x, t) and C(x, t) by means of the Laplace transform method

(LT) with the help of the residues method. Besides, several authors ([3]-[8]) implemented different analytical and numerical

methods to treating the system (1)-(5). The LT method was widely applied to solve various physical models [9-23]. However, it

requires massive calculations as seen in Refs. [2], [16], and [20].

Usually, researchers search for simple but effective methods to solve their physical models. Although previous methods

([1]-[8]) were effective to analyze the system (1)-(5), the simplicity of determining the solution was missed. Hence, this work

aims to develop a simple approach to deal with the current system.

The paper is constructed as follows. In section 2, a direct approach is presented. Section 3 introduces some theoretical

results. Such theoretical results are then invested in section 4 to establish the desired closed-form solution. Conclusion is

outlined in section 5.

2 Direct approach

Firstly, let us put the system (1)-(2) in the form:

∂ϕ

∂t
= V D

∂2ϕ

∂x2
+ ωϕ(x, t) + λV C(x, t),

(6)

∂C

∂t
= αϕ(x, t)− λC(x, t),



Mathematics and Statistics 11(1): 107-116, 2023 109

such that

ω = V

−
∑
a

+(1− β)ν
∑
f

 , α = βν
∑
f

, (7)

and

C(x, 0) = hϕ0, where h =
βν

∑
f

λ
=

α

λ
. (8)

Express ϕ(x, t) and C(x, t) as

ϕ(x, t) =

∞∑
n=0

sin(γnx)z1(t), (9)

C(x, t) =

∞∑
n=0

sin(γnx)z2(t), (10)

where γn = (2n + 1) πL and z1(t) and z2(t) are unknown functions. The assumption (9) satisfies the BCs ϕ(0, t) = 0 and

ϕ(L, t) = 0 where sin(γnL) = sin((2n + 1)π) = 0 ∀ n ∈ N. Based on the assumptions (9) and (10), the ICs (3) and (8) (at

t = 0) give

∞∑
n=0

sin(γnx)z1(0) = ϕ0, (11)

∞∑
n=0

sin(γnx)z2(0) = hϕ0. (12)

Applying Fourier analysis [24] on Eqs. (11) and (12) yields

z1(0) =
4ϕ0

γnL
, z2(0) =

4hϕ0

γnL
. (13)

Employing Eqs. (9) and (10) into Eqs. (6) implies

∞∑
n=0

sin(γnx)z
′
1(t) = −V D

∞∑
n=0

γ2
n sin(γnx)z1(t) + ω

∞∑
n=0

sin(γnx)z1(t) + λV

∞∑
n=0

sin(γnx)z2(t), (14)

and
∞∑

n=0

sin(γnx)z
′
2(t) = α

∞∑
n=0

sin(γnx)z1(t)− λ

∞∑
n=0

sin(γnx)z2(t), (15)

respectively. This leads to the system:

z′1(t) =
(
ω − V Dγ2

n

)
z1(t) + λV z2(t), (16)

z′2(t) = αz1(t)− λz2(t), (17)

which is a linear system of 1st-order ODEs. Such a system is easy to solve as indicated in the next section. Here, it may be noted

that the successful solution of the system (16)-(17) completes the target of this paper. By this, the solutions for z1(t) and z2(t)

are to be substituted into Eqs. (9) and (10) to obtain the explicit forms of ϕ(x, t) and C(x, t).
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3 Analysis

Theorem 1. The exact solution of the system:

z′1(t) = az1(t) + bz2(t), (18)

z′2(t) = cz1(t) + dz2(t), (19)

z1(0) = θ1, z2(0) = θ2, (20)

is

z1(t) = q1e
m1t + q2e

m2t, (21)

z2(t) =
q1
b
(m1 − a) em1t +

q2
b
(m2 − a) em2t, (22)

such that

q1 =
θ1(m2 − a)− bθ2

m2 −m1
, q2 =

bθ2 − θ1(m1 − a)

m2 −m1
,

m1 =
1

2

(
a+ d+

√
(a+ d)2 + 4(bc− ad)

)
, m2 =

1

2

(
a+ d−

√
(a+ d)2 + 4(bc− ad)

)
,

(23)

where a, b, c, d, θ1, and θ2 are given constants.

Proof. Differentiating (18) once with respect to t, yields

z′′1 (t) = az′1(t) + bz′2(t) = az′1(t) + bcz1(t) + dbz2(t), (24)

where Eq. (19) is implemented. Again, from (18) we have bz2(t) = z′1(t) − az1(t), then by inserting this into (24) we get the

2nd-order ODE:

z′′1 (t)− (a+ d)z′1(t)− (bc− ad)z1(t) = 0. (25)

The solution of (25) can be easily obtained as

z1(t) = q1e
m1t + q2e

m2t, (26)

where m1 and m2 are distinct roots of the algebraic equation m2 − (a+ d)m− (bc− ad) = 0, given by

m1 =
1

2

(
a+ d+

√
(a+ d)2 + 4(bc− ad)

)
,

m2 =
1

2

(
a+ d−

√
(a+ d)2 + 4(bc− ad)

)
.

(27)

Accordingly, z2(t) becomes

z2(t) =
q1
b
(m1 − a)em1t +

q2
b
(m2 − a)em2t, (28)

where q1 and q2 are unknown constants. Applying the initial conditions, it then follows

q1 + q2 = θ1,

q1
b
(m1 − a) +

q2
b
(m2 − a) = θ2.

(29)
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Solving this system for q1 and q2, we obtain

q1 =
θ1(m2 − a)− bθ2

m2 −m1
, q2 =

bθ2 − θ1(m1 − a)

m2 −m1
, (30)

which completes the proof.

Theorem 2. The solutions z1(t) and z2(t) are given explicitly by

z1(t) = θ1e
∆1t

[
cosh (∆2t) +

(
a+ hb−∆1

∆2

)
sinh(∆2t)

]
, (31)

z2(t) = θ1e
∆1t

[
h cosh (∆2t) +

(
2c+ h(d− a)

2∆2

)
sinh(∆2t)

]
, (32)

where ∆1, and ∆2 are

∆1 =
1

2
(a+ d), ∆2 =

1

2

√
(a+ d)2 + 4(bc− ad). (33)

Proof. Let m1 and m2 be written as

m1 = ∆1 +∆2, m2 = ∆1 −∆2, (34)

where ∆1 and ∆2 are defined by Eqs. (33). In view of Eqs. (21) and (22), we can rewrite z1(t) and z2(t) as

z1(t) = e∆1t [(q1 + q2) cosh (∆2t) + (q1 − q2) sinh(∆2t)] , (35)

and

z2(t) =
e∆1t

b
[(q1m1 + q2m2 − a(q1 + q2)) cosh (∆2t) + (q1m1 − q2m2 − a(q1 − q2)) sinh(∆2t)] . (36)

Implementing Eqs. (30) for q1 and q2 and Eqs. (34) for m1 and m2 we find that

q1 + q2 = θ1,

q1 − q2 =
(a−∆1) θ1 + bθ2

∆2
.

(37)

Inserting (37) into (35) we obtain z1(t) in the form:

z1(t) = e∆1t

[
θ1 cosh (∆2t) +

(
(a−∆1) θ1 + bθ2

∆2

)
sinh(∆2t)

]
. (38)

On comparing z1(0) and z2(0) in Eqs. (13) and Eqs. (20), we observe that θ2 = hθ1. Hence, z1(t) becomes

z1(t) = θ1e
∆1t

[
cosh (∆2t) +

(
a+ hb−∆1

∆2

)
sinh(∆2t)

]
. (39)

Again, using Eqs. (30) and Eqs. (34) for q1, q2, m1 and m2 we get

q1m1 + q2m2 − a(q1 + q2) = bθ2 = hbθ1, (40)
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and

q1m1 − q2m2 − a(q1 − q2) =
θ1
∆2

[(2a+ hb)∆1 −m1m2 − a(a+ hb)] . (41)

The product m1m2 can be evaluated from (23) and given as

m1m2 = ad− bc. (42)

On substituting the value of ∆1 = 1
2 (a+ d), given in Eq. (33), along with the product m1m2 into Eq. (41), it then follows

q1m1 − q2m2 − a(q1 − q2) =
bθ1
2∆2

[2c+ h(d− a)] . (43)

substituting the quantities in (40) and (43) into (36) and simplifying, we obtain z2(t) in the form:

z2(t) = θ1e
∆1t

[
h cosh (∆2t) +

(
2c+ h(d− a)

2∆2

)
sinh(∆2t)

]
, (44)

and this completes the proof.

4 Closed-form series solution

As indicated in section 2, the solution of the present problem depends on the solution of the system (16)-(17). To find such

solution, we just compare between the system (16)-(17) and the system (18)-(19) to assign the values of a, b, c, and d. By this,

we have

a = ω − V Dγ2
n, b = λV, c = α, d = −λ. (45)

Also, the quantities θ1 and θ2 are determined by comparing the ICs in (13) and (20), this gives

θ1 =
4ϕ0

γnL
, θ2 =

4hϕ0

γnL
, where θ2 = hθ1. (46)

Using the above values we find

∆1 =
1

2
(a− λ), (47)

∆2 =
1

2

√
(λ+ a)2 + 4αλV , (48)

a+ hb−∆1

∆2
=

2αV + λ+ a√
(λ+ a)2 + 4αλV

. (49)

Accordingly, we obtain z1(t) and z2(t) in the following final form

z1(t) =
4ϕ0

γnL
e

1
2 (a−λ)t×[

cosh

(
1

2

√
(λ+ a)2 + 4αλV t

)
+

2αV + λ+ a√
(λ+ a)2 + 4αλV

sinh

(
1

2

√
(λ+ a)2 + 4αλV t

)]
,

(50)
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and

z2(t) =
4hϕ0

γnL
e

1
2 (a−λ)t×[

cosh

(
1

2

√
(λ+ a)2 + 4αλV t

)
+

λ− a√
(λ+ a)2 + 4αλV

sinh

(
1

2

√
(λ+ a)2 + 4αλV t

)]
.

(51)

Therefore, in view of Eqs. (9) and (10) we obtain the following solutions for ϕ(x, t) and C(x, t)

ϕ(x, t) =4ϕ0e
− 1

2λt
∞∑

n=0

sin(γnx)

γnL
e

1
2at×[

cosh

(
1

2

√
(λ+ a)2 + 4αλV t

)
+

2αV + λ+ a√
(λ+ a)2 + 4αλV

sinh

(
1

2

√
(λ+ a)2 + 4αλV t

)]
,

(52)

and

C(x, t) =4hϕ0e
− 1

2λt
∞∑

n=0

sin(γnx)

γnL
e

1
2at×[

cosh

(
1

2

√
(λ+ a)2 + 4αλV t

)
+

λ− a√
(λ+ a)2 + 4αλV

sinh

(
1

2

√
(λ+ a)2 + 4αλV t

)]
,

(53)

respectively. It can be shown that the present solution for the system (1)-(5) is in full agreement with the corresponding one in

Ref. [2] which can be accomplished via additional simplifications for the involved quantities in Ref. [2].

5 Advantage of the proposed method

The main advantages of the proposed approach can be summarized as follows

• It transforms the given PDEs to a system of linear ordinary differential equations (ODEs).

• It facilitates the way to get the solution of the transformed system of ODEs through a simple analytical procedure.

• It avoids the use of any natural transformations such as the LT [2].

• It gives the solution in a direct manner, hence, the complex computational work of other approaches can be avoided.

• It is a straightforward approach and can be further extended/applied to solve other kinds of diffusion kinetic problems.

• It obtains the analytic solution for the current system which is optimal if compared with computer-oriented numerical

methods.

6 Conclusion

A system of two coupled partial differential equations (PDEs) is analyzed in this paper. These PDEs under the present phys-

ical conditions explain the diffusion kinetic problem with one delayed neutron precursor concentration in Cartesian geometry. A
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new direct approach was developed in this work and accordingly the closed-form solution was determined. The current method

overcome the difficulties in literature via avoiding the complexity of the LT-method [2]. In comparison with numerical/analytical

approaches in the relevant literature, our approach is much simpler and direct. Similar diffusion kinetic problems can be treated

in future utilizing the current method.

Declarations

Availability of data and materials: Not applicable.

Competing interests: The author declares that there is no competing interests.

Funding: Not applicable.

REFERENCES

[1] Ceolin C., Vilhena M.T., Leite S.B., Petersen C.Z., “An analytical solution of the one-dimensional neutron diffusion kinetic

equation in cartesian geometry,” International Nuclear Atlantic Conference, – INAC 2009, Janerio, Brazil.

[2] Khaled S.M., “Exact solution of the one-dimensional neutron diffusion kinetic equation with one delayed precursor con-

centration in Cartesian geometry,” AIMS Mathematics, vol. 7, no. 7, pp. 12364-12373, 2022. DOI: 10.3934/math.2022686.

[3] Nahla A.A., Al-Malki F., Rokaya M., “Numerical techniques for the neutron diffusion equations in the nuclear reactors,”

Adv. Stud. Theor. Phys., vol.6, pp. 649–664, 2012.

[4] Tumelero F., Lapa C.M.F., Bodmann B.E.J., Vilhena M.T., “Analytical representation of the solution of the space ki-

netic diffusion equation in a one-dimensional and homogeneous domain,” Braz. J. Radiat. Sci., vol. 7, pp. 01-13, 2019.

https://doi.org/10.15392/bjrs.v7i2B.389.

[5] Nahla A.A., Al-Ghamdi M.F., “Generalization of the analytical exponential model for homogeneous reactor kinetics equa-

tions,” J. Appl. Math., 2012. https://doi.org/10.1155/2012/282367.

[6] Khaled S.M., “Power excursion of the training and research reactor of Budapest University,” Int. J. Nucl. Energy

Sci.Technol., vol. 3, pp. 42–62, 2007. https://doi.org/10.1504/IJNEST.2007.012440.

[7] Khaled S.M., Mutairi F.A.,“ The influence of different hydraulics models in treatment of some physical processes

in super critical states of light water reactors,” Int. J. Nucl. Energy Sci. Technol., vol. 8, pp. 290-309, 2014.

https://doi.org/10.1504/IJNEST.2014.064940.



Mathematics and Statistics 11(1): 107-116, 2023 115

[8] Dulla S., Ravetto P., Picca P., Tomatis D., “Analytical benchmarks for the kinetics of accelerator driven systems,” Joint

International Topical Meeting on Mathematics & Computation and Supercomputing in Nuclear Applications, Monterey-

California, on CD-ROM (2007).

[9] Ebaid A., “Analysis of projectile motion in view of the fractional calculus,” Applied Mathematical Modelling, vol.35, pp.

1231–1239, 2011.

[10] Khaled S.M., Ebaid A., Al Mutairi F.,“The exact endoscopic effect on the peristaltic flow of a nanofluid,” J. Appl. Math,

vol. 2014, Article ID 367526, 11 pages, http://dx.doi.org/10.1155/2014/367526.

[11] Ebaid A., Al Sharif M., “Application of Laplace transform for the exact effect of a magnetic field on heat transfer of

carbon-nanotubes suspended nanofluids,” Z. Nature. A, vol. 70, no. 6, pp. 471-475, 2015.

[12] Ebaid A., Wazwaz A.M., Alali E., Masaedeh B., “Hypergeometric Series Solution to a Class of Second-Order Boundary

Value Problems via Laplace Transform with Applications to Nanofuids,” Commun. Theor. Phys., vol. 67, pp. 231, 2017.

[13] Saleh H., Alali E., Ebaid A., “Medical applications for the flow of carbon-nanotubes suspended nanofluids in the presence

of convective condition using Laplace transform,” Journal of the Association of Arab Universities for Basic and Applied

Sciences, vol. 24, pp. 206–212, 2017.

[14] Ebaid A., Alali E., Saleh H., “The exact solution of a class of boundary value problems with polynomial coefficients and

its applications on nanofluids,” J. Assoc. Arab Univ. Basi Appl. Sci., vol. 24, pp. 156-159, 2017.

[15] Khaled S.M., “The exact effects of radiation and joule heating on Magnetohydrodynamic Marangoni convection over a flat

surface”, Therm. Sci., vol. 22, pp. 63-72, 2018.

[16] Bakodah H.O., Ebaid A., “Exact solution of Ambartsumian delay differential equation and comparison with Daftardar-Gejji

and Jafari approximate method”, Mathematics, vol. 6, no. 12, 2018. https://doi.org/10.3390/math6120331.

[17] Ali H.S., Alali E., Ebaid A., Alharbi F.M., “Analytic solution of a class of singular second-order boundary value problems

with applications,” Mathematics, vol. 7, no. 2, 2019, https://doi.org/10.3390/math7020172.

[18] Ebaid A., El-Zahar E.R., Aljohani A.F., Salah B., Krid M., Machado J.T., “Analysis of the two-dimensional fractional

projectile motion in view of the experimental data,“ Nonlinear Dynamics, vol. 97, no. 2, pp. 1711-1720, 2019.

[19] Ebaid A., Alharbi W., Aljoufi M.D., El-Zahar E.R., “The exact solution of the falling body problem in three-dimensions:

Comparative study,” Mathematics, vol. 8, no. 10: 1726, 2020. https://doi.org/10.3390/math8101726.



116 A Simple Approach for Explicit Solution of The Neutron Diffusion Kinetic System

[20] Ebaid A., Cattani C., Al Juhani A.S. et al. “A novel exact solution for the fractional Ambartsumian equation,” Adv. Differ.

Equ., vol. 88, 2021. https://doi.org/10.1186/s13662-021-03235-w.

[21] Ebaid A., Al-Jeaid H.K., “The Mittag–Leffler Functions for a Class of First-Order Fractional Initial Value Problems: Dual

Solution via Riemann–Liouville Fractional Derivative,” Fractal Fract., vol. 85, no. 6, 2022. https://doi.org/10.3390/ fractal-

fract6020085.

[22] Aljohani A.F., Ebaid A., Algehyne E.A., Mahrous Y.M., Cattani C., Al-Jeaid H.K., “The Mittag-Leffler Function

for Re-Evaluating the Chlorine Transport Model: Comparative Analysis,” Fractal Fract., vol. 125, no. 6, 2022.

https://doi.org/10.3390/fractalfract6030125.

[23] Aljohani A.F., Ebaid A., Algehyne E.A., Mahrous Y.M., Agarwal P., Areshi M., Al-Jeaid H.K., “On solving the chlorine

transport model via Laplace transform,” Scientific Reports, vol. 12, no. 1, pp. 1-11, 2022.


