
Environment and Ecology Research 9(3): 119-133, 2021 http://www.hrpub.org 
DOI: 10.13189/eer.2021.090304 

Projections of Cardiovascular Disease Mortality in 
Peninsular Malaysia Using Statistical Downscaling 

Based on Cluster Approach 

Aina Izzati Mohd Esa, Syafrina Abdul Halim*, Norhaslinda Ali 

Department of Mathematics and Statistics, Faculty of Science, Universiti Putra Malaysia, 43400, Selangor, Malaysia 

Received January 28, 2021; Revised April 6, 2021; Accepted June 5, 2021 

Cite This Paper in the following Citation Styles 
(a): [1] Aina Izzati Mohd Esa, Syafrina Abdul Halim, Norhaslinda Ali , "Projections of Cardiovascular Disease 
Mortality in Peninsular Malaysia Using Statistical Downscaling Based on Cluster Approach," Environment and 
Ecology Research, Vol. 9, No. 3, pp. 119 - 133, 2021. DOI: 10.13189/eer.2021.090304. 

(b): Aina Izzati Mohd Esa, Syafrina Abdul Halim, Norhaslinda Ali (2021). Projections of Cardiovascular Disease 
Mortality in Peninsular Malaysia Using Statistical Downscaling Based on Cluster Approach. Environment and Ecology 
Research, 9(3), 119 - 133. DOI: 10.13189/eer.2021.090304. 

Copyright©2021 by authors, all rights reserved. Authors agree that this article remains permanently open access under 
the terms of the Creative Commons Attribution License 4.0 International License 

Abstract  Projecting the mortality of cardiovascular 
disease in future is crucial in preparing the mitigation 
strategies. The purpose of this research is to estimate 
number of deaths of the cardiovascular disease in 
Peninsular Malaysia based on future temperature 
projections using the cluster approach. Ward's method is 
used to identify the number of clusters of 45 
meteorological stations by calculating the shortest distance 
between the two coordinates of the stations. The output of 
global climate model (GCM) is incredibly useful for the 
projection of future temperature, but the large bias in the 
observational datasets may lead to inaccurate projection. 
To tackle the bias, a good fitted model for temperature 
series is important in order to ensure that the mean and 
variability of the observed series are well captured. It is 
important to estimate the parameters for each cluster 
precisely. Furthermore, a good fitted model for 
temperature series is also crucial in order to ensure that the 
mean and variability of the observations are well captured. 
Thus, this study proposed the appropriate statistical 
distribution for the temperature series to be associated in 
the bias correction method (BCM) using the quantile 
mapping (QM) technique to reduce the biases between 
observations and historical GCM temperature data series. 
Next, Ward’s method is applied to determine the optimal 
number of clusters for Peninsular Malaysia. The results 
have shown that the proposed model is able to reduce the 
temperature series biases between the GCM and the 

observations. Six clusters throughout Peninsular Malaysia 
have been selected based on Ward’s method. The 
projection number of deaths of cardiovascular disease 
under is estimated to increase between 2006 and 2100 in all 
clusters across Peninsular Malaysia, based on the 
temperature projections. 

Keywords  Bias Correction Model, Cardiovascular 
Disease, Global Climate Model, Ward, Quantile Mapping 

1. Introduction
Climate change has been shown in recent research to 

dramatically increase temperature-related mortality. 
However, the potential effects of climate change-related 
health risks will differ greatly between diseases. The 
population's exposure to local social and environmental 
stressors, and access to health care, potential health 
outcomes will differ across regions and countries. Global 
climate models (GCMs) is the common model to assess 
future climate. GCMs has a long history of growth and 
have a rare opportunity to physically model global climate 
and uncertainty in novel ways [1]. However, the resolution 
of GCMs is too coarse and is associated with distortions 
due to the structure of the model, the processes of 
parameterization, assumption, and calibration [2]. As a 
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result, GCMs cannot be used to forecast future climates 
directly. Downscaling is the process of reducing a coarse 
resolution to the GCM output's finest resolution. Statistical 
and dynamical downscaling are the two types of 
downscaling.  The process of developing statistical 
relationships between local climate variables and large 
atmospheric variables is known as statistical downscaling. 
Statistical downscaling is used in this study due to several 
advantages such as it is less computational, good in 
capturing the bias, and can provide finer resolution outputs 
than dynamical downscaling [3]. Statistical downscaling 
encompasses a wide range of techniques. Bias correction 
method (BCM) is one of the statistical downscaling 
approaches in which it can correct the bias between 
observations and historical GCM data that remain valid 
under future conditions [4]. One of the techniques in BCM 
namely quantile mapping (QM), is often used to capture 
changes in the mean and variability of a GCM [5]. 
Grouping similar stations in a good structure could explain 
the climate of Peninsular Malaysia accurately [6]. The 
estimated parameter values without clustering may not 
represent the whole Peninsular Malaysia quite well as each 
region has different climatic characteristics as well as 
different topographical factor. It is important to estimate 
the parameters for each cluster precisely [7]. Furthermore, 
a good fitted model for temperature series is also crucial in 
order to ensure that the mean and variability of the 
observations are well captured. Thus, this study proposed 
the appropriate statistical distribution for the temperature 
series to be associated in the bias correction method (BCM) 
using the quantile mapping (QM) technique to reduce the 
biases between observations and historical GCM 
temperature data series. Next, Ward’s method is applied to 
determine the optimal number of clusters for Peninsular 
Malaysia. Therefore, the aim of this study are to project the 
future series of daily mean temperatures (2006-2100) and 
to calculate the cardiovascular disease mortality rate 
(2006-2100) in Peninsular Malaysia based on the 
projections of temperature using the cluster approach. 

2. Literature Review 

2.1. Temperature in Malaysia 

According to the Intergovernmental Panel on Climate 
Change (IPCC), Southeast Asian countries, especially 
developing countries like Malaysia, would be the most 
vulnerable to heatwaves [8]. From 1961 to 2002, surface 
temperature in most parts of Malaysia showed major 
warming trends [9]. Warming patterns of between 2.7°C 
and 4.0°C/100 years were observed at various stations in 
Peninsular Malaysia and northern Borneo. Kuching and 
Bintulu stations had lower rates of between 1.0°C and 
1.5°C/100 years, while Miri had no noticeable warming or 
cooling pattern. From 2008 to 2010, the lowest heatwave 

index was 27.3°C in Kuching and the highest heatwave 
index was 35.0°C in Sandakan in East Malaysia [10]. From 
2001 to 2010, the highest heatwave index experienced in 
Kuala Lumpur with an increase of 9.1°C, and the lowest 
heatwave experienced in Alor Setar with an increase of 
0.1°C across Peninsular Malaysia [11]. In addition, the 
moderate heatwave index was found at 4.2°C in Kuantan, 
and the longest heatwave, spanning 24 days, occurred in 
Ipoh, Perak, with amplitudes ranging from 29.4°C to 
33.0°C [11]. The heatwave's characteristics were also 
compared to spatial distribution maps, which revealed that 
the southeast, northeast, and west parts of Peninsular 
Malaysia experience the most heatwaves. During dry 
season, the highest heatwave index occurred between 
March and July [11]. Tang [12] had investigated daily 
mean temperature in five different locations: Kota 
Kinabalu, Kuching, Malacca, Kuantan, and Subang Jaya. 
The annual moving average of daily mean temperature in 
Kota Kinabalu has been discovered to be on the rise, with 
temperatures fluctuating between 26°C and 28.5°C. In 
Kuantan, the temperature varies from 25°C to 28°C, while 
in Subang Jaya, temperature ranges from 26°C to 28.7°C. 
Meanwhile, Kuching has a temperature range of 25.5°C to 
27.5°C, while Malacca has a temperature range of 26°C to 
28.5°C. Kuching had the smallest annual moving average 
increment of daily mean temperature, followed by Kota 
Kinabalu, Malacca, Kuantan, and Subang Jaya. Due to the 
slower rate of development, Kuching experienced the 
smallest temperature rise. This confirmed that the 
heatwave conditions in Malaysia are concerning, 
necessitating further research and investigation because of 
the effects of heatwaves that may directly affect the 
agriculture, economics, and human health [10-11]. 

2.2. Cardiovascular Disease (CVD) 

Cardiovascular diseases (CVDs) are a category of 
diseases that affect the heart and blood vessels. Coronary 
heart disease (CHD), one of the CVDs, is the leading cause 
of death globally. CHD mortality has risen by more than 
threefold in Malaysia over the last 40 years and it continues 
to grow. CVDs were ranked third in the 1950s, steadily 
rising to first place in 1970, and continued to grow in 1989, 
with 16.5 times increase from 1.8% in 1950 to 29.6% in 
1989 [13]. This suggests that CVDs have surpassed 
respiratory diseases, neoplasms diseases, infectious 
diseases, metabolic diseases, and blood diseases as the 
leading cause of death among the six disease groups. The 
four main diseases under CVD are coronary heart disease, 
cerebrovascular disease, hypertension, and rheumatic heart 
disease. Deaths due to CHD increased from 32.7% in 1965 
to 38.2% in 1989, while deaths due to cerebrovascular 
disease, hypertension, and rheumatic heart disease 
decreased from 33.1%, 16.0%, and 4.5% in 1975 to 30.1%, 
1.4%, and 1.7% in 1989 [13]. Other types of CVDs have 
decreased from 46% in 1965 to 28.6% in 1989 [13]. 
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According to the Department of Statistics Malaysia 
(DOSM), in 2016, CHD was the leading cause of death 
with 13.2%, followed by pneumonia (12.5%), 
cerebrovascular disease (6.7%), transportation incidents 
(5.4%), and malignant neoplasms of the trachea, bronchi, 
and lung (2.2%) [14]. In the next two years, the proportion 
rises by 13.9% and 15.6%, respectively [15-16]. Although 
the number of deaths of CHD decreased marginally in 2019, 
it remained as the leading cause of death with 15.0%, 
followed by pneumonia (12.2%), cerebrovascular disease 
(8.0%), transportation incidents (3.8%), and malignant 
neoplasm of the trachea, bronchus, and lung (2.4%) [17].  

2.3. Cluster Analysis 

Cluster analysis is the method of combining objects from 
the same cluster with objects from other clusters. The 
formulation of a query, the selection of a distance metric, 
the selection of a clustering process, the definition of the 
number of clusters, the interpretation of profile clusters, 
and the evaluation of clustering validity are all part of 
cluster analysis. The aim of cluster analysis is dealing with 
the underlying structure of data in order to gain insights of 
previously unknown data, as well as to identify significant 
features and probable, classification to determine the 
degree of similarity among data points, and compression to 
organize and summarize the data into understandable 
segments [18-19]. Cluster analysis is becoming more 
common in atmospheric science for redefining climate 
divisions using specific climate and meteorological data 
[18-20]. Several studies have used cluster analysis to 
determine the spatial and temporal trends of monthly 
precipitation [6, 21-23]. It has been suggested that cluster 
analysis can be used in variable such as temperature to 
investigate the regional characteristics of temperature 
distribution through pattern and spatial analysis 
temperature variability on an annual and 
monsoon-seasonal basis for various climatic regions [6]. 
Several studies have used the k-means clustering approach 
to classify the spatial and temporal patterns [23]. The 
k-means method allows users to determine the number of 
clusters to be used. However, incorrectly specifying the 
number of clusters can lead to severe errors in the analysis 
[6]. On the other hand, Ward’s method is less sensitive in 
determining the number of clusters and capable of 
capturing extreme values [7]. Hence, Ward's method is 
used for clustering. 

2.4. Bias Correction Method Quantile Mapping 

BCMs use a transfer function to correct the bias between 
observations and historical climate variables. The 
advantages of the transfer function are assumed to be 
stationary and remain valid for the future period [4]. 
Several BCMs have been developed to downscale the 
meteorological variables from the GCM outputs, varying 

from the simple or linear method to the advanced or 
nonlinear method [4-5, 24]. Linear scaling, variance 
scaling, power transformation, QM, daily bias correction, 
local intensity scaling, daily translation, delta change 
method, multiple linear regression, multiple linear 
regression with randomization, analogue method, and 
nearest neighbour analogue are only a few examples of 
BCMs [4-5, 24-31]. QM is one of the best BCM methods 
because of the ability of QM to adjust the mean, the 
quantile, the variances, and preserving the extremes [4-5, 
26-27]. The aim of QM is to match the GCM outputs' 
probability density distribution (PDF) with the PDF of 
observed data [4, 32]. This can be accomplished by 
adjusting the occurrence distributions of meteorological 
variables using a transfer function [33]. QM can be 
classified into three types: distribution-derived QM, 
parametric QM, and nonparametric QM [34]. As it offers 
the best combination of accuracy and robustness [26-27], 
QM based on distribution derived is used in this study. 
Previous research has assumed that temperature series are 
usually normally distributed with a symmetrical shape of 
distribution [4-5, 26-27, 35-37]. However, the 
distribution’s shape of temperature series is positively 
skewed. Thus, Gamma distribution with three parameters 
is proposed in this study. The addition of a location 
parameter, 𝜃𝜃  which can be used to determine the best 
central value for describing the data. In particular, the 
temperature series is fitted with a QM with three 
parameters: shape (𝛼𝛼), scale (𝛽𝛽), and location (𝜃𝜃) of the 
Gamma distribution to reduce the biases between 
observations and GCMs temperature. 

3. Methods/Methodology 

3.1. Data 

The historical daily mean temperature for Peninsular 
Malaysia was obtained from 45 weather stations between 
1976 and 2005 [23]. The Interdisciplinary Climate 
Research Model (MIROC5) outputs are used, which were 
modelled as part of the Phase 5 Coupled Model 
Comparison Project (CMIP5). In this study, the historical 
GCM of daily mean temperature (1976-2005) and the 
future GCM of daily mean temperature (2006-2100) were 
obtained under RCP4.5 and RCP8.5. Representative 
Concentration Pathways (RCPs) are a collection of 
estimated initial values for radiative forcing, CO2 
concentration, and temperature anomaly up to the year 
2100. RCPs were created using economic activity, energy 
sources, population growth, and other socioeconomic 
variables [38]. RCP8.5 represents increasing greenhouse 
gas emissions over time, while RCP4.5 represents a 
stabilization scenario in which radiative forcing stabilizes 
shortly after 2100 while remaining below the long-run 
radiative forcing target level. Radiative forcing is the result 
of a process that changes the balance of incoming and 
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outgoing energy in the Earth-atmosphere system. As 
shown in Table 2, each RCP has its own emissions 
trajectory and radiative forcing. The mortality data for 

unstable angina, STEMI, and NSTEMI being recorded at 
Malaysia's hospital were obtained from [39-42]. 

Table 1.  The list of stations and the coordinates of 45 stations throughout Peninsular Malaysia 

State Station Number Longitude (°) Latitude (°) 

Perlis 
1 100.225 6.525 

2 100.275 6.525 

Kedah 
3 100.325 6.125 

4 100.375 6.125 

Penang 5 100.375 5.375 

Perak 

6 101.025 4.575 

7 101.075 4.575 

8 101.325 4.525 

9 101.375 4.525 

10 100.825 4.825 

11 100.875 4.825 

12 100.725 4.225 

13 100.775 4.225 

Selangor 

14 101.525 3.125 

15 101.575 3.125 

16 101.525 3.025 

17 101.575 3.025 

18 101.625 2.725 

19 101.675 2.725 

Melaka 
20 102.225 2.225 

21 102.275 2.225 

Negeri Sembilan 
22 102.225 2.725 

23 102.275 2.725 

Johor 

24 102.925 1.825 

25 102.975 1.825 

26 103.325 2.025 

27 103.375 2.025 

28 103.625 1.625 

29 103.675 1.625 

45 103.825 2.425 

Kelantan 

30 102.225 5.525 

31 102.275 5.525 

32 103.025 5.425 

33 103.075 5.425 

Terengganu 
34 103.125 4.325 

35 103.425 4.525 

Pahang 

36 102.325 3.975 

37 102.375 3.975 

38 103.225 3.775 

39 103.275 3.775 

40 103.325 3.775 

41 102.425 3.425 

42 102.475 3.425 

43 103.025 3.075 

44 103.075 3.075 
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Table 2.  The emission trajectory and radiative forcing 

RCP Radiative forcing (𝑾𝒎𝟐) 𝑪𝑶𝟐 equivalent (𝒑.𝒑.𝒎) Temperature anomaly (℃) Pathway 

RCP4.5 4.5 post 2100 650 2.4 Overshoot-free 
stabilization 

RCP8.5 8.5 in 2100 1370 4.9 Rising 

 

3.2. Ward’s Method 

Hierarchical (HCA) and non-hierarchical (NCA) cluster 
analysis are the two types of cluster analysis (NHCA). 
HCA is used in this study to compress, organize, and 
summarize data into manageable clusters. HCA connects 
the coordinates that are the most similar. Starting with an 
agglomerative approach. It begins with 𝑁 data points that 
are grouped together to form individual clusters. To form a 
new cluster, the shortest distance between 𝑁 and 𝑁 − 1 
neighbours is measured. After that, consider the distance 
between the remaining 𝑁 − 2 coordinates and the newly 
created cluster. The two coordinates are then connected to 
the shorter distance, either by adding data coordinates to 
the two clusters or by constructing a new cluster from two 
new data points. This process is repeated until is a single 
cluster of 𝑁  coordinates is achieved, regardless of the 
absolute distance between them. This is an incredibly good 
algorithm for reducing dimensionality. The results of HCA 
are often represented as a dendrogram, a tree-shaped graph 
that contains crucial information about the cluster's 
measured distances and the couplings formed. HCA has 
advantages over the NCA where the cluster number 
determination is not sensitive. One of the methods in HCA 
is Ward's form. Ward's approach has the advantage of 
reducing overall within-cluster variance. The formula for 
measuring the distance between two points is 

𝐷 = ∑ ∑ �(𝑥𝑖 − 𝑥𝑖)2 + �𝑦𝑗 − 𝑦𝑗�
2𝑛

𝑗=1
𝑛
𝑖=1      (1) 

where, 𝑛  is 45 number of stations and (𝑥𝑖 ,𝑦𝑗 ) is the 
coordinates of each stations. 

3.3. Quantile Mapping (QM) 

QM defines a transfer function to reduce the biases 
between observations and historical GCM temperature data 
series. The transfer function is 

𝑏 = 1
𝐶𝐷𝐹𝑥

�𝐶𝐷𝐹𝑦 × 𝑦�        (2) 

where, 𝑏  represents the corrected temperature between 
observations and historical GCM, 𝑦  represents the 
observations of daily mean temperature, 𝐶𝐷𝐹𝑥 and 𝐶𝐷𝐹𝑦 
represents the cumulative distribution function (CDF) of 
historical GCM and observations of daily mean 
temperature, respectively. Equation (1) is used to calculate 
future daily mean temperature projections under RCP4.5 
and RCP8.5. The observations (𝑦 ) were replaced with 
future GCM temperature under RCP4.5 (𝑣1) and RCP8.5 
(𝑣2 ) while the historical GCM temperature (𝑥 ) were 

replaced with the corrected temperature (𝑏). Let 𝑝1 and 𝑝2 
represent the projection of future daily mean temperature 
under RCP4.5 and RCP8.5. 

𝑝1 = 1
𝐶𝐷𝐹ℎ

(𝐶𝐷𝐹𝑣1 × 𝑣1)          (3) 

𝑝2 = 1
𝐶𝐷𝐹ℎ

(𝐶𝐷𝐹𝑣2 × 𝑣2)           (4) 

The PDF of Gamma distribution with three parameters is 

𝑓(𝑥;𝛼𝛼,𝛽𝛽,𝜃𝜃) = (𝑥−𝜃)𝛼−1𝑒
−(𝑥−𝜃)

𝛽

𝛽𝛼𝛾(𝛼)
       (5) 

where, 𝛼𝛼  the shape, 𝛽𝛽  the scale, 𝜃𝜃  the location, and 
𝛾(𝛼𝛼)  gamma function. The parameter values can be 
estimated using Maximum Likelihood Function (MLE). 
Hence, the ln 𝐿 is 

ln 𝐿 = −𝑛𝛼𝛼 ln𝛽𝛽 − 𝑛 ln 𝛾(𝛼𝛼) + (𝛼𝛼 − 1)∑ ln(𝑥𝑖 − 𝜃𝜃) −𝑛
𝑖=1

∑ (𝑥𝑖−𝜃)𝑛
𝑖=1

𝛽
               (6) 

By taking the partial derivatives with respect to 𝛼𝛼, 𝛽𝛽, 
and 𝜃𝜃. Then, let the equation equals to zero, 

𝛿 ln𝛼
𝛿𝛼

= ∑ ln(𝑥𝑖 − 𝜃𝜃)𝑛
𝑖=1 − 𝑛 ln𝛽𝛽 − 𝑛𝜓(𝛼𝛼) = 0  (7) 

𝛿 ln𝛽
𝛿𝛽

= ∑ (𝑥𝑖−𝜃)𝑛
𝑖=1

𝛽2
− 𝑛𝛽

𝛼
= 0         (8) 

𝛿 ln𝜃
𝛿𝜃

= (𝛼𝛼 − 1)∑ 1
𝑥𝑖−𝜃

𝑛
𝑖=1 + 𝑛

𝛽
= 0       (9) 

The value of 𝛼𝛼, 𝛽𝛽, and 𝜃𝜃 cannot be estimated directly 
because of ∑ 1

𝑥𝑖−𝜃
𝑛
𝑖=1 . The value of 𝛼𝛼, 𝛽𝛽, and 𝜃𝜃 can be 

calculated in a closed form without having to solve the 
nonlinear equations simultaneously [43]. The formula to 
estimate 𝜃𝜃 is 

𝜃𝜃 = ∑ 𝜃𝜃𝑖𝑥𝑖𝑛
𝑖=1 , 𝑖 = 1,2,3, … ,𝑛      (10) 

where, 

𝜃𝜃1 = 1 + �1 −
1
𝑛
�
𝑛

 

𝜃𝜃𝑖 = �1 −
1
𝑛
�
𝑛

− �1 −
(𝑖 − 1)
𝑛

�
𝑛

, 𝑖 = 2,3,4, … ,𝑛 

𝑥  represents the daily mean temperature value's first 
order statistics. The formula to estimate 𝛼𝛼 and 𝛽𝛽 are 

𝛼𝛼 = (�̅�−𝜃)2

𝑠2
                (11) 

𝛽𝛽 = �̅�−𝜃
𝛼

                 (12) 

where, �̅� represents the average of daily mean temperature 
and 𝑠2 represents the variance of daily mean temperature. 
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3.4. Validation Framework 

The results of corrected temperature with QM for all 
clusters are compared to the observations using k-fold 
cross validation to reduce the effects of the training period 
selection and to ensure the assessment's robustness [44]. To 
calibrate the parameters, first use the period from 1976 to 
1996 as the training period. Then, as a single experiment, 
correct the temperature biases for the remaining 10 years. 
The training period is then advanced by one year per time, 
and the BCM and validation are completed for the 
remaining years. This operation is performed triple times. 
Therefore, 20 continuous 30-year periods are chosen as 
training periods and 10 remaining years as validation 
periods. The root-mean-square error (RMSE) and mean 
absolute error (MAE) are used to determine the efficiency 
of corrected temperature with QM for all clusters (MAE). 
Furthermore, using the baseline period of 1976 to 1996 as a 
reference, the future temperatures for all clusters are 
projected from 2006 to 2100 under RCP4.5 and RCP8.5. 
RMSE and MAE are used to test the efficiency of all 
clusters for future temperature projections under RCP4.5 
and RCP8.5. 

3.5. Attributable Annual Deaths 

The attributable annual deaths formula was used to 
project the impact of temperatures on CVD mortality rates 
in the future (2006-2100) [45-47], 

𝐴𝐴𝐷 = 𝑦0 × 𝐸𝑅𝐶 × 𝑃𝑂𝑃         (13) 

where, 𝐴𝐴𝐷  represents attributable annual deaths, 𝑦0 
represent the baseline annual mortality, 𝐸𝑅𝐶  represents 
attributable change in mortality due to cardiovascular 
disease at each temperature, and 𝑃𝑂𝑃 represents the total 
population. The constant values of 𝑦0  and 𝑃𝑂𝑃  were 
obtained from the National Cardiovascular Disease 
Database (NCVD) and DOSM in 2015, respectively. A 
distributed lag non-linear model (DLNM) was used to 
model the relationship between temperature and 
cardiovascular disease mortality [45-46]. DLNM has the 
advantage of capturing the lagged dependencies of 
exposure-response relationships by using two-function 
modelling (lag-response relationships and 
exposure-response, respectively) and complex non-linear. 
The exposure-response and lag-response relationships are 

then incorporated into the cross-basis function. In the 
exposure-response relationship, a quadratic B-spline is 
used, while in the lag response relationship, a natural cubic 
B-spline is used [46]. 

4. Results and Discussion 
Table 3.  The minimum value of Kelly-Gardner-Sutcliffe 

Number of clusters Value 

4 22.2270 

6 19.4703 

Table 4.  The list of 45 stations of 6 clusters throughout Peninsular 
Malaysia 

Cluster State Station 

1 

Perlis 

1,2,3,4,5 Kedah 

Penang 

2 Perak 6,7,8,9,10,11,12,13 

3 

Selangor 
14,15,16,17,18,19,20,2

1,22,23 Melaka 

Negeri Sembilan 

4 Johor 24,25,26,27,28,29,45 

5 
Kelantan 

30,31,32,33,34 
Terengganu (Station 34) 

6 
Terengganu (Station 35) 35,36,37,38,39,40,41,4

2,43,44 Pahang 

Figure 1 shows the cluster dendrogram for 45 stations 
throughout Peninsular Malaysia. Ward’s method has 
advantages when the determination of cluster number is 
less sensitive compared to the k-means method [6]. 
However, a different number of clusters could give 
different results. Hence, the optimal number of clusters 
could give more reliable results using the Ward’s method 
[18]. Based on Table 3, six clusters have a minimum value 
of Kelly-Gardner-Sutcliffe which is 19.4703 compared to 
four clusters which is 22.2270. Thus, six clusters are the 
optimum number of clusters that will be selected in this 
study. Table 4 lists the number of stations for each cluster 
throughout Peninsular Malaysia. 

 



  Environment and Ecology Research 9(3): 119-133, 2021 125 
 

 

Figure 1.  The cluster dendrogram for 45 stations throughout Peninsular Malaysia using Ward’s method 

Table 5.  The descriptive statistics for observations daily mean 
temperature of 6 clusters throughout Peninsular Malaysia 

Cluster Descriptive Value 

1 

Mean 25.7665 

Median 25.7299 

Skewness 0.1436 

Kurtosis 0.2906 

2 

Mean 26.9084 

Median 26.8880 

Skewness 0.1075 

Kurtosis -0.0570 

3 

Mean 24.7683 

Median 24.7625 

Skewness 0.0019 

Kurtosis -0.0114 

4 

Mean 26.9084 

Median 26.8880 

Skewness 0.0843 

Kurtosis 0.1173 

5 

Mean 26.1734 

Median 26.1602 

Skewness 0.1082 

Kurtosis 0.0757 

6 

Mean 26.2549 

Median 26.2449 

Skewness 0.1219 

Kurtosis -0.0168 

Table 5 shows the descriptive statistics for the observed 
daily mean temperature of 6 clusters throughout Peninsular 
Malaysia. The result shows that the value of mean is 
greater than the value of median which indicates that 

observed daily mean temperature for all clusters is 
positively skewed. It is also supported by the positive value 
of skewness. Thus, Gamma distribution with three 
parameters is used to fit the observed daily mean 
temperature for all clusters throughout Peninsular Malaysia. 
The value of kurtosis for cluster 1, 4, and 5 are positive 
while in contrast, the value of kurtosis for cluster 2, 3, and 6 
show negative values. The positive value of kurtosis 
represents indicate that a distribution is peaked and possess 
thick tails while the negative value of kurtosis indicates 
flatter distribution. 

Table 6.  The correlation coefficient between and within clusters across 
Peninsular Malaysia 

Correlation coefficient between 
clusters 

Correlation coefficient within 
clusters 

0.0259 0.9182 

Table 6 shows the correlation coefficient between and 
within clusters across Peninsular Malaysia. The correlation 
coefficient within clusters is higher than the correlation 
coefficient between clusters. This indicates that there is no 
strong relationship between clusters while there is a strong 
relationship within clusters. 

Table 7 shows the statistical analysis of observations, 
historical GCM, and corrected daily mean temperature of 
all clusters throughout Peninsular Malaysia after QM. The 
results show that the mean and variance values for all 
clusters are almost identical to the observations. Closer 
values of RMSE and MAE to zero indicate the smallest 
difference between observation and corrected daily mean 
temperature, indicating better simulation accuracy. Cluster 
5, cluster 6, cluster 3, cluster 1, and cluster 4 have lower 
RMSE and MAE values than cluster 2, cluster 6, cluster 3, 
cluster 1, and cluster 4. In comparison to the other clusters, 
this shows that QM provides reliable results for cluster 5 
[48].
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Table 7.  Statistical analysis of observations, historical GCM, and 
corrected daily mean temperature of all clusters throughout Peninsular 
Malaysia after QM 

Cluster Data 
Frequency statistics 

(Daily) 
Time series 

statistics (Daily) 
Mean Variance RMSE MAE 

 Historical 
GCM 25.7665 1.2697 - - 

1 

Observed 
Temperature 27.3949 1.0008 

0.5171 0.2674 Corrected 
Temperature 27.9117 1.0390 

2 

Observed 
Temperature 24.2317 0.8453 

0.2049 0.0420 
Corrected 

Temperature 24.4364 0.8596 

3 

Observed 
Temperature 26.9084 0.9992 

0.4422 0.1956 Corrected 
Temperature 27.3504 1.0323 

4 

Observed 
Temperature 26.8266 0.9972 

0.6626 0.4390 Corrected 
Temperature 27.4887 1.0471 

5 

Observed 
Temperature 26.7451 1.0649 

0.1924 0.0370 
Corrected 

Temperature 26.5528 1.0497 

6 

Observed 
Temperature 26.5305 1.0627 

0.4372 0.1911 Corrected 
Temperature 26.9673 1.0980 

Table 8.  The RMSE and MAE of yearly corrected temperature with QM 
for all clusters throughout Peninsular Malaysia compared to observations 
from 1976 to 2005. 

Cluster Data 
K-fold cross validation 

RMSE MAE 

1 Corrected Temperature 0.00004 0.00004 

2 Corrected Temperature 0.00005 0.00004 

3 Corrected Temperature 0.00007 0.00006 

4 Corrected Temperature 0.00005 0.00004 

5 Corrected Temperature 0.00005 0.00004 

6 Corrected Temperature 0.00007 0.00006 

 

Table 8 shows the RMSE and MAE of yearly corrected 
temperature with QM for all clusters throughout Peninsular 
Malaysia compared to observations from 1976 to 2005. 
The value of RMSE and MAE for all clusters are less zero. 
This indicates that the average of the 20 experiments shows 
that the QM can reduce biases in the temperature of GCM 
significantly. 

Table 9.  The RMSE and MAE of projection of future temperature of all 
clusters throughout Peninsular Malaysia under RCP4.5 and RCP8.5 
scenarios 

Cluster Data 
K-fold cross validation 

RMSE MAE 

1 
RCP4.5 0.0000340 0.0000288 

RCP8.5 0.0000309 0.0000254 

2 
RCP4.5 0.0000338 0.0000286 

RCP8.5 0.0000298 0.0000255 

3 
RCP4.5 0.0000327 0.0000277 

RCP8.5 0.0000347 0.0000303 

4 
RCP4.5 0.0000327 0.0000284 

RCP8.5 0.0000316 0.0000267 

5 
RCP4.5 0.0000311 0.0000269 

RCP8.5 0.0000323 0.0000278 

6 
RCP4.5 0.0000345 0.0000306 

RCP8.5 0.0000311 0.0000266 

Table 9 shows the RMSE and MAE of projection of 
future temperature of all clusters throughout Peninsular 
Malaysia under RCP4.5 and RCP8.5 scenarios. For both 
clusters, the RMSE and MAE values are less than zero. 
This means that the projection of future temperature of all 
clusters under the RCP4.5 and RCP8.5 scenarios across 
Peninsular Malaysia are reliable. 

Table 10 shows the estimated parameter values of the 
shape 𝛼𝛼� , scale �̂�𝛽  and location 𝜃𝜃�  for corrected 
temperature for all clusters in Peninsular Malaysia and 
future GCM under RCP4.5 and RCP8.5. All the values of 
𝛼𝛼� , �̂�𝛽  and 𝜃𝜃�  are highly significant based on 95% 
confidence interval. 
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Table 10.  The estimated parameter values of the shape 𝛼𝛼�, scale �̂�𝛽, and location 𝜃𝜃� for corrected temperature of 6 clusters in Peninsular Malaysia and 
future GCM under RCP4.5 and RCP8.5. 

Cluster Data Parameter Estimated value (SE) 95% CI 

1 Corrected values 
𝛼𝛼 2602.6467 (24.8719) (2602.1808, 2603.1126) 
𝛽𝛽 0.0203 (0.0002) (0.02029, 0.0203) 
𝜃𝜃 -24.9117 (-0.2228) (-24.9075, -24.9159) 

2 Corrected values 
𝛼𝛼 2393.5693 (22.8738) (2393.1409, 2393.9977) 
𝛽𝛽 0.0190 (0.0002) (0.01899, 0.0190) 
𝜃𝜃 -20.9238 (-0.2000) (-20.9201, -20.9275) 

3 Corrected values 
𝛼𝛼 2486.3362 (23.7603) (2485.8912, 2486.7812) 
𝛽𝛽 0.0204 (0.0002) (0.02039, 0.0204) 
𝜃𝜃 -23.3117 (-0.2228) (-23.3075, -23.3159) 

4 Corrected values 
𝛼𝛼 2460.3256 (23.5118) (2459.8852, 2460.7660) 
𝛽𝛽 0.0206 (0.0002) (0.02059, 0.0206) 
𝜃𝜃 -23.2668 (-0.2223) (-23.2626, -23.2710) 

5 Corrected values 
𝛼𝛼 2292.6727 (21.9096) (2292.2623, 2293.0831) 
𝛽𝛽 0.0214 (0.0002) (0.02139, 0.0214) 
𝜃𝜃 -22.5036 (-0.2151) (-22.4996, -22.5076) 

6 Corrected values 
𝛼𝛼 2293.9304 (21.9216) (2293.5198, 2294.3410) 
𝛽𝛽 0.0219 (0.0002) (0.02189, 0.0219) 
𝜃𝜃 -23.2204 (-0.2219) (-23.2162, -23.2246) 

- Future GCM 
(RCP4.5) 

𝛼𝛼 1744.1813 (16.6680) (1743.8691, 1744.4935) 
𝛽𝛽 0.02767 (0.0003) (0.02767, 0.02768) 
𝜃𝜃 -21.4962 (-0.2054) (-21.4923, -21.5000) 

- Future GCM 
(RCP8.5) 

𝛼𝛼 1355.9014 (12.9575) (1355.6587, 1356.1441) 
𝛽𝛽 0.03637 (0.0003) (0.03637, 0.03638) 
𝜃𝜃 -22.0165 (-0.2104) (-22.0126, -22.0204) 

 

 

(a) 
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(e) 

 

(f) 

Figure 2.  The monthly mean temperature of historical GCM, observed 
and corrected temperature for (a) 1st cluster, (b) 2nd cluster, (c), 3rd cluster, 
(d) 4th cluster, (e) 5th cluster, and (f) 6th cluster throughout Peninsular 
Malaysia. 

Figure 2 shows the monthly mean temperature for 
historical GCM, observed and corrected temperature of all 
clusters throughout Peninsular Malaysia. The monthly 
mean temperature recorded the lowest value of monthly 
mean temperature in January and December. This is 
because November and December associate with the 
northeast monsoon wet seasons when the weather is cooler 
than in other seasons. Meanwhile, the highest value of 
monthly mean temperature was recorded in May. 
Peninsular Malaysia experiences southwest monsoon 
rainfall between March and October where this area 
receives minimal rainfall during this period and is 
considered as a dry period [49]. Different ranges of mean 
temperature were observed in different clusters due to the 
climate characteristic differences. The delineated 
temperature zones are closely linked to geography and 
topographic characteristics [6, 23]. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
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(e) 

 

(f) 

Figure 3.  The boxplot of mean temperature from January until 
December for (a) 1st cluster, (b) 2nd cluster, (c), 3rd cluster, (d) 4th cluster, 
(e) 5th cluster, and (f) 6th cluster throughout Peninsular Malaysia. 

Figure 3 shows the boxplot of mean temperature from 
January until December for all clusters. In contrast to the 
second halves of the year, the outliers are more prominent 
in the first half of the year. In general, the shape of the 
mean temperature distribution for all clusters is positively 
skewed between January and June, indicating that the 
weather is slightly warmer during this period. However, the 
weather becomes somewhat cooler towards the end of the 
year. 

 

(a) 

2  

(b) 

 

(c) 

 

(d) 

 

(e) 
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(f) 

Figure 4.  The yearly mean temperature of raw future GCM and 
corrected temperature (a) 1st cluster, (b) 2nd cluster, (c), 3rd cluster, (d) 4th 
cluster, (e) 5th cluster, and (f) 6th cluster throughout Peninsular Malaysia 
under RCP4.5. 

Figure 4 shows the monthly mean temperature of raw 
future GCM and corrected temperature of all clusters under 
RCP4.5. The projection of temperature for cluster 1, 3, and 
5 is higher than the raw future temperature whereas the 
projection of temperature for cluster 4 and 6 is lower than 
the raw future temperature. Nevertheless, the projection of 
temperature for cluster 2 is similar to raw future 
temperature. All clusters recorded the highest value of 
monthly mean temperature in June while the lowest value 
of monthly mean temperature between December and 
January. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 5.  The yearly mean temperature of raw future GCM and 
corrected temperature for (a) 1st cluster, (b) 2nd cluster, (c), 3rd cluster, (d) 
4th cluster, (e) 5th cluster, and (f) 6th cluster throughout Peninsular 
Malaysia under RCP8.5. 
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Figure 5 shows the monthly mean temperature of raw 
future GCM and corrected temperature of all clusters 
throughout Peninsular Malaysia under RCP8.5. The 
projection of temperature for cluster 3 is slightly higher 
than the raw future temperature whereas the projection of 
temperature for cluster 1, 2, 4, and 6 is lower than raw 
future temperature. The temperature projection for clusters 
5 is close to the raw future temperature. The highest 
monthly mean temperature was recorded in June in all 
clusters, while the lowest monthly mean temperature was 
recorded between December and January in all clusters. 

 

(a) 

 

(b) 

Figure 6.  The projection of number of deaths for all clusters throughout 
Peninsular Malaysia under (a) RCP4.5 and (b) RCP8.5 between 2006 and 
2100 

Figure 6 shows the projection of the number of deaths 
for all clusters throughout Peninsular Malaysia under 
RCP4.5 and RCP8.5 between 2006 and 2100. For both 
clusters, the projected number of deaths is usually the same. 
Between 2006 and 2100, the number of deaths projected 
under RCP4.5 and RCP8.5 are fluctuating. From 2006 to 
2100, the number of deaths under RCP4.5 and RCP8.5 had 
increased. However, as compared to the number of deaths 
projected under RCP4.5, the number of deaths projected 
under RCP8.5 is higher. 

 

 

Table 11.  The increment projection of temperature under RCP4.5 and 
RCP8.5 for 6 clusters throughout Peninsular Malaysia 

Cluster Increment RCP4.5 Increment RCP8.5 

1 

0.05℃ 

0.1269 

0.1℃ 

0.2604 

2 0.1270 0.2607 

3 0.1265 0.2592 

4 0.1276 0.2616 

5 0.1268 0.2599 

6 0.1278 0.2624 

Table 11 shows the increment projection of temperature 
under RCP4.5 and RCP8.5 for 6 clusters throughout 
Peninsular Malaysia. The increment projection of 
temperature under RCP4.5 by 0.05 ℃  of all clusters 
whereas the increment projection of temperature under 
RCP8.5 by 0.1℃. The projection of temperature under 
RCP4.5 for cluster 5 has higher ratio while the projection 
of temperature under RCP4.5 for cluster 1 has lower ratio. 
Meanwhile, the projection of temperature under RCP8.5 
for all clusters have similar ratio except for cluster 1. 

5. Conclusion 
In conclusion, Ward’s method could obtain the optimal 

number of clusters in Peninsular Malaysia based on the 
Kelly-Gardner-Sutcliffe. QM was able to fit the 
temperature series as well as eliminate biases in the mean 
and variability, resulting in an accurate prediction of 
heat-related CVD. RCP8.5 has a higher CVD mortality 
estimate than RCP4.5. This is because RCP8.5 expect 
global temperature to rise of about 4.3°C whereas RCP 4.5 
delivers global temperature increase around 2°C to 3°C. 
However, there are a few caveats to this study that must be 
addressed. To begin with, this study only corrects 
temperature in the present study, ignoring any other biases 
from different sources such as sample size selection and 
other potential sources of bias. Second, the population is 
projected to increase in the future. Finally, other causes of 
CVD and different categories of patients, such as gender, 
age, and race, must be examined in a future study in order 
to achieve more meaningful outcomes. Many of these 
issues are essential for further study. 
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