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Abstract Increased flood risk is recognized as one of the
most significant threats in most parts of the world, resulting in
severe flooding events which have caused significant property
and human life losses. As there is an increase in the number of
extreme flash flood events observed in Klang Valley, Malaysia
recently, this paper focuses on modelling extreme daily
rainfall within 30 years from year 1975 toyear 2005 in Klang
Valley using generalized extreme value (GEV) distribution.
Cyclic covariate is introduced in the distribution because of
the seasonal rainfall variation in the series. One stationary
(GEV) and three nonstationary models (NSGEV1, NSGEV2,
and NSGEV3) are constructed to assess the impact of cyclic
covariates on the extreme daily rainfall events. The better
GEV model is selected using Akaike’s information criterion
(AIC), bayesian information criterion (BIC) and likelihood
ratio test (LRT). The return level is then computed using the
selected fitted GEV model. Results indicate that the NSGEV3
model with cyclic covariate trend presented in location and
scale parameters provides better fits the extreme rainfall data.
The results showed the capability of the nonstationary GEV
with cyclic covariates in capturing the extreme rainfall events.
The findings would be useful for engineering design and flood
risk management purposes.

Keywords Covariate, Cyclic, Generalized Extreme Value,
Rainfall, Stationary

1 Introduction
Extreme value analysis of hydrological data allows interpret-

ing historical data and making inference on future probabilities

of occurrence of extreme events, such as floods due to extreme
rainfalls. Extreme values are often represented by the maxi-
mum value of a given variable over a time period such a year
[1]. As climate change became an increasingly important issue
over the past two decades, technical terms like ”stationarity”
and ”nonstationarity” also became more obvious. Nonstation-
arity can simply be defined as processes that are are constant in
time and that have statistical properties that are deterministic
functions of time. Statistical inference for hydrological time
series such as extreme rainfall events normally relied on the
assumption of stationarity [2]. Nevertheless, under the com-
bined influences of climate change and variability or human
intervention [3], the series often exhibits nonstationary fea-
tures and will not likely satisfy stationary assumptions [4, 5].
Nonstationarity may affect both the severity and frequency of
these extreme events [6]; therefore, the reality of nonstationary
hydrometeorological extremes needs to be properly addressed.
Accurate distribution models are required to accurately capture
the nonstationary climate. Nonstationary extreme value mod-
els with climatic covariates could be the valuable tools to assess
future changes in extreme rainfall distribution and quantiles for
engineering design and flood risk management purposes [7].

One of the well-known distributions that were used in hydro-
logical analysis is known as generalized extreme value (GEV)
distribution. GEV distribution is one of the most commonly
used for the analysis of extreme rainfall events [8]. Estima-
tion of return levels is usually based on three extreme value
distributions: Gumbel, Fréchet and Weibull which were sug-
gested by [9] for stochastic behaviour of large samples. Quite
a number of studies have been performed in Malaysia for de-
termining the most suitable probability distribution of extreme
rainfall events. Gamma, Generalized Normal, Generalized
Pareto, GEV, Gumbel, Log Pearson Type III, Pearson Type III
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and Wakeby have been compared to determine the most ac-
curate and appropriate distribution for the maximum rainfall
estimates. It has been reported that GEV shows better descrip-
tive and predictive abilities for the annual extreme rainfall as
compared to other distributions [10]. From the analysis, it was
found that 94% of rainfall stations in Peninsular Malaysia was
best fitted by GEV. The findings are consistent with Nguyen
[11] where several distributions namely Beta-K, Beta-P, GEV,
Generalized Logistic distribution, Generalized Normal distri-
bution, Generalized Pareto, Gumbel, Log Pearson Type III,
Pearson Type III and Wakeby have been compared. It was
found that GEV, Generalized Normal distribution and Pearson
Type III were the best distribution for the annual maximum
rainfall series. However, GEV was preferred as it gives a better
description of annual maxima rainfall series where it has more
solid theoretical basis which makes it preferable in determin-
ing the daily annual maximum rainfall. GEV was also capa-
ble in deriving the Intensity-Duration-Frequency (IDF) curve
for rainfall series in [12] over other distributions. Recently,
extreme precipitation data were fitted with four distributions
namely, Generalized Pareto, Gumbel, GEV, and Exponential
in Peninsular Malaysia. Results have shown that GEV distri-
bution was found to best fit the time series at most of the sta-
tions in Peninsular Malaysia based on Kolmogorov Smirnov
test [13].

It is very common to allow trends in the GEV parameters
to consider nonstationarity in the frequency analysis of hydro-
logical variables [14] as constant parameters may no longer be
valid under nonstationary conditions. Several studies have de-
veloped nonstationary GEV models in hydrological area. Ad-
louni et al. [1] developed a nonstationary GEV with the lin-
ear and quadratic dependence of the location parameter on co-
variates, and the linear dependence in both location and scale
parameters. Maraun et al. [15] proposed a study that inves-
tigated the annual cycle of extreme events across the United
Kingdom by developing a statistical model and fitting the non-
stationary GEV to data from 689 rain gauges. GEV distribution
was used to fit to the time series of monthly maxima, across all
months of the year simultaneously. The annual cycles of the
location and scale parameters are approximated by harmonic
functions, while keeping the shape parameter constant through-
out the year. The study revealed that the approximation of the
monthly maxima distribution by the GEV and the annual cy-
cle by a sine wave appeared to be reasonable. The sinusoidal
model proved to be a good compromise between a bias due to a
stationarity assumption and the uncertainty owing to too many
parameters.

Agilan and Umamahesh [16] observed that urbanization and
local temperature changes were the best covariate factors for
short duration rainfall in India. However, the covariate time
was not concluded as the best covariates. Golroudbary et al.
[17] found that the nonstationary GEV model gives a bet-
ter estimate by considering the impact of the North Atlantic
Oscillation and the annual seasonal cycle on the parameters.
Meanwhile, this study uses a harmonic function model for all
monthly maxima during the year with seasonal variations in-
stead of individual models for every month. Sharma and Mu-
jamdar [18] concluded that local mean temperature was found

to be significant covariate of nonstationary GEV for extreme
rainfall of the studied region. A nonstationary GEV model with
cyclic covariate structure is proposed in this work. All extreme
events were calculated assuming that maximum annual daily
precipitations follow the GEV distribution. The parameters
are estimated by using maximum likelihood estimation (MLE).
To account for nonstationarity, the parameters of the extreme
value distribution are modified with a set of predictors or co-
variates [19, 20]. Accordingly, the sine and cosine functions
are developed by considering the impact of cyclic covariate on
the location and scale parameters. Therefore, the objectives
of the study are to fit the stationary (GEV) and nonstationary
(NSGEV) model with cyclic covariate on extreme daily rainfall
series using the MLE, to identify the best fitted GEV model
for extreme daily rainfall series using the Akaike’s informa-
tion criterion (AIC), bayesian information criterion (BIC) and
likelihood ratio test (LRT) and to estimate the return level of
extreme rainfall events using the best fitted GEV model.

2 Materials and Methods
Klang Valley covers the area of Kuala Lumpur and all the

adjoining cities and towns in the state of Selangor. Over the
years, the cities of Klang Valley have seen significant devel-
opment and growth, leading to a good economy and a strong
real estate market. The Klang Valley river basin is located on
the west coast of Peninsular Malaysia and surrounds the fed-
eral territory of Kuala Lumpur and some parts of the state of
Selangor. Since the Klang Valley river basin is surrounded by a
heavily populated area with more than 4 million people, there-
fore it is considerably polluted. Huge development has nar-
rowed certain stretches of the river and eventually resembles a
large storm drain in some places. Hence, this contributes to the
occurrences of flash floods in Kuala Lumpur, especially after
heavy rain [21]. JPS Ampang rainfall station is selected in this
study to represent Klang Valley. This is because, every year,
higher rainfall amount is being recorded at this station.

2.1 Data

Daily rainfall data between the years 1975 and 2005 were
sourced from the Drainage and Irrigation Department. JPS
Ampang station as in Fig. 1 will be selected to represent daily
rainfall in Klang Valley. Daily rainfall data consists of missing
data out of 39 of 11324 total daily rainfalls. A missing rate of
5% or less in the datasets is inconsequential [22].

2.2 Stationary test

In order to fulfil the stationarity assumption of the GEV dis-
tributions, the Mann-Kendall (MK) test is performed on the
data to check for trends over different selection periods. The
MK trend test is a widely used non-parametric test for eval-
uating the presence of monotonic trends in time series data
[23]. The MK test is a widely used technique for detecting
monotonic trends in hydrological and meteorological time se-
ries [28]. The MK test which does not require normally dis-
tributed data and is well suited for analysing datasets that have
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Figure 1. Location of JPS Ampang station.

missing or tied data [25]. The annual maximum daily rainfall
series are concerned. The variable m, with t = 1, . . . , T , to
denote these annual maxima, and with T being the total num-
ber of years of data in the record. The differences in the data
values between different time steps as

d(t1, t2) = mt2 −mt1 (1)

with t2 > t1, then the test statistic becomes

N =

T−1∑
t1=1

T∑
t2=t1+1

sgn[d(t1, t2)] (2)

with sgn[d(t1, t2)]with sgn[d(t1, t2)] denoting the sign of
[d(t1, t2)]. The test statistic N represents the number of mt2 is
greater thanmt1 , minus the number of timesmt1 is greater than
mt2 , for all possible combinations of mt2 and mt1 with t2 >
t1. A positive value of N implies that the time series increased
more frequently than it decreased (and vice versa for a negative
value of N ), and the value of N is bounded by ±T (T − 1)/2.
Kendall’s τ is a normalized version of this statistic, which is
obtained by dividing by this upper bound

τ =
2N

T (T − 1)
(3)

So that τ is bounded by [−1, 1]. Assuming the data are serially
independent, the null hypothesis can be approximated by a
normal distribution, with more details in [23]. Using a 5%
two-sided significance level, H0 is rejected when the test
statistics is less than the critical value which is 0.05. The
Mann-Kendall analysis is conducted using the R package.

H0 : There exists no trend in the extreme rainfall se-
ries

H1 : There exists trend in the extreme rainfall series

2.3 Stationary generalized extreme value distribution
(GEV)

The GEV distribution is a family of continuous probabil-
ity distributions developed within extreme value theory (EVT)
which comprises of Gumbel, Fréchet and Weibull families.
The GEV distribution is parameterized with a shape parame-
ter (ξ), location parameter (µ) and scale parameter (σ). Each
type corresponds to the limiting distribution of block maxima
from a different class of underlying distributions. If the tails of
distribution decrease exponentially, it leads to the type I (Gum-
bel) ; if the tails of distribution decrease as a polynomial, it
leads to type II (Fréchet) and if the distribution has finite tails,
it leads to the type III (Weibull). GEV combines three distri-
butions into a single form, allowing a continuous range of pos-
sible shapes that include all three of the distributions. One of
the distributions is used to model a particular dataset of block
maxima. Based on the EVT, the GEV distribution is the limit
distribution of properly normalized maxima of a sequence of
independent and identically distributed random variables. Data
are blocked into sequences of observations of length n, for
some large value of n, generating a series of block maxima,
Mn,1, ...,Mn,m, to which the GEV distribution can be fitted.
Often the blocks are chosen corresponding to a time period of
length one year, in which case n is the number of observations
in a year and the block maxima are annual maxima. In this
case, x is defined as the extreme rainfall (mm/day) in monthly
maxima. Like the extreme value distribution, the GEV is often
used to model the smallest or largest value among a large set of
independent, identically distributed random values represent-
ing measurements or observations. The cumulative distribution
function of the GEV distribution is

F (x;µ, σ, ξ) =


exp(−(1 + ξ x−µσ )−

1
ξ ), σ > 0,

1 + ξ x−µσ > 0, ξ 6= 0

exp(−exp(−x−µσ )), σ > 0, ξ = 0
(4)
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The parameters of the GEV distribution are estimated by the
method of maximum likelihood. A standard approach to deter-
mining the better fitting model is the maximum likelihood ratio
test. Let the valuesX = x1, x2, ..., xn be the n years of annual
maximum series. The log likelihood is given as

logL(µ, σ, ξ|X) = −nlogσ − (1 +
1

ξ

n∑
i=1

log[1 +
ξ(xi − µ)

σ
]

−
n∑
i=1

ξ(xi − µ)
σ

]−
1
ξ , 1 +

ξ(x− µ)
σ

> 0, ξ 6= 0 (5)

logL(µ, σ|X) = −nlogσ −
n∑
i=1

log[
ξ(xi − µ)

σ
], ξ = 0 (6)

The maximum likelihood estimate with respect to the entire
GEV family can be estimated through maximizing (5) and (6)
with respect to the parameter vector (µ, σ, ξ) [19].

2.3.1 Nonstationary generalized extreme value distribu-
tion (NSGEV)

Nonstationary processes have characteristics that change
systematically through time. Nonstationarity is often apparent
because of seasonal effects, perhaps due to different climate
patterns in different months, or in the form of trends, more
probably due to long-term climate changes. In this study, non-
stationary GEV (NSGEV) distribution models will be devel-
oped to investigate whether GEV parameters exhibit any de-
pendency with representative indices of cyclic covariate factors
that have significant effects on daily rainfall in Klang Valley.
Nonstationarity is introduced by revealing more than one pa-
rameters of the GEV distribution as function of cyclic covariate
indices. The cumulative distribution function of the NSGEV
distribution is,

F (x;µ(t), σ(t), ξ) = exp(−1[+ξ(x− µ(t))
σ(t)

]−
1
ξ ,

1 +
ξ(x− µ(t))

σ(t)
> 0 (7)

Consequently, the constant GEV parameters µ (or σ or ξ) are
replaced by the new parameters, µn and µ1 (or the correspond-
ing parameters for σ and ξ) [15]. On the other hand, it is quite
difficult to estimate the shape parameter of the extreme value
distribution with precision when it is time dependent, thereby;
it is not realistic to attempt to estimate the scale parameter as
a smooth function of time [19]. To obtain a model which is
linear in the parameters,µ and σ are modeled as a combination
of sine and a cosine with a 1-year period, evaluated at the
centre-day of each month, ci.

For the location parameter,

µ(t) = µ0 + µ1 sin(ωci + φ), i = 1, ..., 12 (8)

where,µ1 denotes the amplitude of the sinusoidal component

(estimated free parameter) φ denotes the phase ω = (2π)
352.25

which denotes the angular frequency ci denotes t. However,
it is not linear in the parameters due to phase π. Hence, 8 is
reformulated to obtain an equivalent linear model as

µ(t) = µ0 + µ1 sin(ωci) + µ2 cos(ωci), i = 1, ..., 12 (9)

In this study, the location and scale parameters with the sea-
sonal variation described by sinsoidal functions and the shape
parameter is assumed to be a constant in 10 and 11.

µ(t) = µ0 + µ1 sin(
2π

12
) + µ2 cos(

2π

12
) (10)

σ(t) = σ0 + σ1 sin(
2π

12
) + σ2 cos(

2π

12
) (11)

where, the terms above are the same as described in 8, 12
means 12 months in a year and ξ is treated as constant.

2.3.2 Selection of models

The significance of the models will be tested using AIC[26]
and BIC [27] and LRT. Both the AIC and BIC are used to
select the best nonstationary fitting models. The best fitted
GEV model is selected following these three steps: (1) the
model with the lowest AIC value is identified; then, (2) the
model with the lowest BIC value, (3) the greatest deviance
statistics value which indicates that NSGEV model explains
more variability of data than GEV model. But how large
is large for deviance statistics value should be determined
from asymptotic distribution of deviance function. These
steps imply that if one of the NSGEV model is the best fitted
model, then the cyclic covariate trend is said to be significantly
influenced the extreme daily rainfall at the 5% significance
level based on LRT [28].

The AIC is

AIC = −2logL(θ̂) + 2k (12)

The BIC is
BIC = −2logL(θ̂) + klogn (13)

where,θ denotes the vector of model parameters, L(θ̂) denotes
the likelihood of the candidate model given the data when
evaluated at the maximum likelihood estimate of θ k denotes
the number of estimated parameters in the candidate model n
denotes the number of observations.
Statistical significance of nonstationary parameters in the
model M1 against GEV model is commonly evaluated with
LRT. If NSGEV models outperform the stationary GEV
models; then the NSGEV models should be used instead of the
GEV models for frequency analysis of extreme daily rainfall.
Let M0 and M1 be stationary and nonstationary models
respectively. LRT is employed to compare the superiority of
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M1 over M0 using the log-likelihood difference (D) [1, 19].

D = 2[l(θ̂0 − l(θ̂)] (14)

where, l(θ̂0) denotes the maximized log-likelihood under non-
stationary model l(θ̂) denotes the maximized log-likelihood
under stationary model. Large values of D indicate the model
M1 explains substantially more of the variation in the data than
M0. Hypothesis is tested based on Chi-Square distribution
with critical value of degree of freedom of 1 is 3.84 at the 0.05
significance level thus the model H0 can be rejected which
mean model H1 is favoured.

H0 : NSGEV model is not superior to GEV model

H1 : NSGEV model is superior to GEV model

2.4 Return level

Once the best fitted GEV model for the data has been
determined, the return level of extreme daily rainfall is
derived. The probability P of the occurrence of the extreme
events is defined as the chance of the event occurring at least
once on average in T years; hence, P = 1

T [17]. More
precisely, it is the level exceeded y the monthly maxima in
any month with probability, p. Estimation of the return level,
zp is obtained from the stationary models by inverting the
cumulative function of GEV distribution.

For GEV model,

zp =


µ− σ

ξ [1− y
−ξ
p ], ξ 6= 0

µ− σlog(yp), ξ = 0

(15)

where, G(zp) = 1− p, yp = −log(1− p), and 0 < p < 1.

For NSGEV model,

zp = µ(t)− σ(t)

ξ
[1− y−ξp ], ξ 6= 0 (16)

where, µ(t) and σ(t) are described in (7) and (8)

G(zp) = 1− p, yp = −log(1− p), 0 < p < 1 (17)

20-year, 50-year and 100-year return levels of extreme rainfall
for the year 1975 and 2005 are predicted using (12) and (13)
derived from the corresponding GEV distribution.

3 Results
A summary of daily rainfall amount for JPS Ampang station

is summarized in Table 1 where the mean, standard deviation,
median, first quartile, third quartile, minimum value and max-
imum value are given. Total daily rainfall in January showed

the least standard deviation whereas the highest standard devi-
ation is recorded in April which indicates the largest variation
in their daily rainfall amount series. This could possibly be af-
fected by the extreme values (maximum value). Based on Fig.
2, the station recorded the highest amount rainfall in April and
November due to heavier rainfall that occurred and least rain-
fall in January. Due to the northeast monsoon and southwest
monsoon season, there are some infrequent outliers lies in the
daily rainfall data series. These outliers are treated as maxi-
mum values where the GEV will be applied to fit these values.

4 Discussion
The presence of trend in the extreme rainfall series is tested

using the MK trend test in which the null hypothesis indicates
no trend. The daily rainfall is blocked into monthly as in Table
2 suggests that the annual maximum rainfall shows that there is
no trend while the monthly maximum rainfall shows the exis-
tence of a trend as time increases. The seasonal monthly trend
is more pronounce than annual trend as Malaysia’s surface cli-
mate is influenced by two monsoon seasons namely northeast
(November until February) and southwest (May until August)
monsoon seasons. In between these two monsoon seasons
are the inter-monsoon seasons occurring in March – April and
September – October, which brings convective rainfall. The
annual average rainfall is 2,420 mm for Peninsular Malaysia,
2,630 mm for Sabah and 3,830 mm for Sarawak. Malaysia has
consistently hot and humid weather throughout the year as it is
situated near the equator. This explains the significance of the
test statistics of MK where the monthly trend is more signifi-
cant than annual trend.

4.1 GEV and NSGEV models

The total daily rainfall amount per month for JPS Ampang
station during the period January-December for all available
year is considered. The time blocks of fixed lengths (months)
is considered and the maximum value is taken for each block.
There are four GEV or NSGEV distribution models presented
in this study: GEV0 is a stationary model where the parame-
ters are treated as constant; NSGEV1 is a nonstationary model
where the location parameter is treated as time dependent pa-
rameter; NSGEV2 is a nonstationary model where the scale
parameter is assumed as time dependent parameter; NSGEV3
is a nonstationary model where both scale and location param-
eters are treated as time dependent parameters. The covariate
functions in each model are presented in Table 3.

4.2 Parameter estimations and model selection

GEV distribution is parameterized with a shape parameter
ξ, location parameter µ and scale parameter σ. Nonstationar-
ity was introduced by revealing more than one parameters of
the GEV distribution as function of cyclic covariate. µ and σ
are described by sine and cosine functions while ξ is assumed
to be a constant. In Table 4, the nonstationary models used
in this study incorporated unfixed location and scale parame-
ters and the shape parameter is fixed. The “ismev” package in
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Figure 2. Boxplot of amount of daily rainfall from 1975 until 2005 at JPS Ampang station, Klang Valley.
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Table 1. Statistics of rainfall amount (mm/day) from 1975 until 2005.

Month Mean Median Standard deviation First quartile Third quartile Minimum value Maximum value
January 3.6931 0.00 9.0076 0 2.000 0 72.5
February 6.5467 0.00 14.0105 0 4.825 0 89.0

March 6.9974 0.40 14.0512 0 7.500 0 113.5
April 9.3381 1.00 16.9345 0 11.200 0 135.0
May 6.8075 0.00 14.9625 0 5.500 0 124.5
June 4.5095 0.00 12.204 0 1.500 0 118.5
July 4.8863 0.00 11.718 0 3.500 0 93.0

August 5.2059 0.00 12.4387 0 3.200 0 112.5
September 6.7801 0.40 13.699 0 7.050 0 115.5

October 8.7626 1.20 16.183 0 10.500 0 0.0169
November 9.5776 2.40 15.925 0 12.500 0 0.0046
December 6.4453 0.50 14.336 0 0.500 0 0.0022

(A)

(B)

Figure 3. Time series plot of maximum rainfall at JPS Ampang station, Klang Valley over the period 1975-2005 for the (A) monthly and (B) annual periods.

Table 2. MK trend test for trend.

Period Test statistics (2-sided) P-value Description
Monthly 0.104 0.002737* Reject H0, there is existence of trend in the series
Annual 0.132 0.375 Do not reject H0, there is no existence of trend in the series

1

R (R, 2005) is used in the analysis which relies on the MLE method for parameter estimation. The maximized log likeli-
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Table 3. Developed GEV and NSGEV moels for monthly maxima rainfall data.

Model ID Parameters of model Remarks
GEV0 µ (constant), σ (constant), ξ (constant) Stationary model

NSGEV1 σ (constant), ξ (constant), Nonstationary model with
µ(t) = µ0 + µ1 sin(2πt/12) + µ2 cos(2πt/12) time dependent location parameter

NSGEV2 µ (constant), ξ (constant), Nonstationary model with
σ(t) = σ0 + σ1 sin(2πt/12) + σ2 cos(2πt/12) time dependent scale parameter

NSGEV3 ξ (constant), σ(t) = σ0 + σ1 sin(2πt/12) + σ2 cos(2πt/12) Nonstationary model with
σ(t) = σ0 + σ1 sin(2πt/12) + σ2 cos(2πt/12) time dependent location and scale parameter

hood under the different models is listed to enable the LRT test
statistics to be computed. The result of model analysis with
monthly maxima rainfall series of Klang Valley is given in Ta-
ble 5. NSGEV3 is found to be the best NSGEV model for
monthly maximum rainfall in which the trend is introduced in
location and scale parameter with cyclic covariate. The AIC
and BIC values indicate that NSGEV3 is the best or adequate
model among the four models. Furthermore, the likelihood
ratio test is used to evaluate between the choices of model
which is D(θ) = 2[l(θ̂n) − l(θ̂)] whereby l is the log likeli-
hood function, based on Chi-Square distribution with critical
value of a degree of freedom of 1 is 3.84 at the 0.05 signifi-
cance level. The deviation value between NSGEV3 and GEV0
is 4.416 which is greater than the critical value (3.84). This
indicates that model NSGEV3 is the most superior to the sta-
tionary model.

4.3 Model diagnostics

Figure 4 show the model diagnostics from fitting the extreme
monthly rainfall (mm/day) for one GEV model and three NS-
GEV models. The probability and quantile plots in Fig. 4(A)
shows points are close to the linear line which means the fitted
model is valid. The negative estimates of the ξ cause the return
level curve to asymptote to a finite level. Thus, the estimated
curve for the return level plot is approximately linear since the
values of ξ is close to zero. For NSGEV1, NSGEV2, NSGEV3,
only the residual probability and quantile plots are displayed
with the quantile plot on the Gumbel scale in Fig. 4(B), 4(C)
and 4(D). Adequacy of best selected model is checked with
two graphical diagnostic plots. Inspection on NSGEV 1 and
NSGEV2 resulted in similar results. These plots reveal that all
models are well-fitted.

4.4 Return level estimate

Return values contain two quantities; return period 1/p and
return level (recurrence level) zp. Finally, the best fitting GEV
model is used to estimate the 20-year, 50-year and 100-year re-
turn levels of extreme rainfalls at JPS Ampang Station between
the years 1975 and 2005. The highest daily rainfall for the 30-
year observation period is 135mm/day. Return levels are used
to predict the probability that a daily maximum rainfall exceed-
ing 135mm/day will occur in a longer period. The estimation
of the T -year return levels for T = 20, 50 and 100 return peri-
ods are estimated as shown in Table 6. Equation (16) is used
to estimate the return levels for return period = 20, 50 and 100
years as confidence of shape parameter ξ is not including 0.
The return levels for monthly selection periods with their 95%

confidence intervals which are obtained by profile likelihood
are displayed in brackets in Table 6. From this table, it can be
observed that return level estimates increase as the return peri-
ods increase. The results also prove return level estimation of
the best fitted GEV model indicates the rainfall does not exceed
extreme rainfall value for in the next 20, 50 and 100 years in
terms of monthly extreme rainfall which is 135mm/day of the
observation rainfall data.

5 Conclusions

The purpose of this study is to provide statistical knowledge
for the dependence of nonstationary effects of trend to be con-
veniently accounted for risk management. GEV distribution is
used to model extreme rainfall using data obtained from JPS
Ampang station for the period from 1975 to 2005. Due to the
presence of the seasonal monsoon season in Malaysia, cyclic
covariate trend is applied in the GEV distribution in this study.
In this study, NSGEV distribution model is presented. The fo-
cus is on nonstationarity in the location and scale parameters
of the GEV distribution in order to counter the seasonality fac-
tor in rainfall series. In the case of extreme value variables,
the NSGEV model is better in capturing the mean ad variance
than GEV0. In particular, the models presented correspond to
the stationary GEV model, the case in which there is a cyclic
covariate trend in the location parameter, the case where the
scale parameter is a cyclic function of the covariate and the
case with cyclic covariate trend in both location and scale pa-
rameters. Parameter estimation for these models is generally
carried out using the MLE method. The Block Maxima with
GEV is applied on 30-year daily rainfall data in Klang Valley
during the year of 1975 until the year of 2005. The data sta-
tionarity is also a concerning issue for this study, thus MK test
is used to assess the stationarity of the data. For this study, the
data is blocked into monthly and annually then the MK test is
applied on the data. Results have shown that there is an ex-
istence of significance trend in the monthly extreme rainfall
whereas there is an absence of significance trend in the annual
extreme rainfall series. Overall, by considering the model se-
lection criteria, NSGEV3 produces the smallest AIC value and
BIC value. The deviation value between NSGEV3 and GEV0
is greater than the critical value therefore null hypothesis is
rejected at 95% significance level which indicates that model
NSGEV3 is the most superior to the GEV0. It can be thus con-
cluded that NSGEV3 better fits the extreme rainfall data in JPS
Ampang station. Based on the best fitted GEV model, the re-
turn levels are then computed in the period of 20 years, 50 years
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Figure 4. Model disgnostics for model (A) GEV0, (B) NSGEV1, (C) NSGEV2 and (D) NSGEV3.



Mathematics and Statistics 8(6): 762-772, 2020 771

Table 4. Developed GEV and NSGEV moels for monthly maxima rainfall data.

Parameters GEV0 (s.e) NSGEV1 (s.e) NSGEV2 (s.e) NSGEV3 (s.e)
(LCL, HCL) (LCL, HCL) (LCL, HCL) (LCL, HCL)

µ 42.0002 - 41.9749 -
(1.2129) (1.2158)

(39.6230, 44.3775) (39.5919, 44.3579)
µ0 - 42.0148 - 45.2633

(1.2119) (1.2819)
(39.6395, 44.3901) (42.7508, 47.7758)

µ1 - 0.7119 - 2.6528
(1.1047) (1.1772)

(-1.4533, 2.8771) (0.3455, 4.9601)
σ 20.6879 20.6857 - -

(0.8134) (0.8717)
(19.0936, 22.2822) (18.9772, 22.3942)

σ0 - - 0.6765 3.0723
(0.8735) (0.0420)

(18.9644, 22.3886) (2.9900, 3.1546)
σ1 - - 0.2287 0.038

(0.8133) (0.0417)
(-1.3654, 1.8228) (-0.0437, 0.1197)

ξ -0.0472 -0.0479 -0.0462 -0.0832
(0.0398) (0.0395 (0.0399) (0.0395)

(-0.1252, 0.0308) (-0.1253, 0.0295) (-0.1244, 0.0320) (-0.1606, -0.0058)

Table 5. Model selection criteria for monthly extreme rainfall.

Criteria Model Value
AIC GEV0 -3398.338

NSGEV1 -3401.922
NSGEV2 -3402.260
NSGEV3 -3409.170*

BIC GEV0 -3394.915
NSGEV1 -3389.958
NSGEV2 -3389.696
NSGEV3 -3393.465*

LRT, D(θ) GEV0 vs NSGEV1 -0.416
GEV0 vs NSGEV2 -0.078
GEV0 vs NSGEV3 4.416*

2

Table 6. Return level estimate of monthly maximum for T=20, 50, 100 with 95% confidence interval.

Period T=20 T=50 T=100
Monthly 98.73 115.09 126.89
NSGEV3 (96.96, 101.80) (113.04, 118.64) (124.64, 130.79)

and 100 years later. The return level estimation of best fitted
GEV model indicates the rainfall does not exceed extreme rain-
fall value for T = 20, 50 and 100 in terms of monthly extreme
rainfall which is 135mm/day of the observation rainfall data.

This study has proved the capability of EVT serves as a use-
ful analysis tool in describing the extreme events. Hence, non-
stationary extreme events models with cyclic covariates could
become the valuable tools to assess the future changes in ex-
treme rainfall distribution and quantiles for engineering design
and flood risk management purposes. The limitation is that
other covariate trend apart from cyclic trend should be consid-
ered for this research purpose such as linear trend or quadratic
trend therefore it is easier to evaluate the performance of GEV
model distribution in extreme rainfall. For recommendation,
this paper suggests the use of GEV approach in modelling rain-
fall in Malaysia for future study as it is a widely used distribu-
tion tools for extreme events which is commonly found in the
past literatures. This study also recommends that the most re-
cent rainfall data of extreme rainfall should be accounted to

carry out the future research instead of taking the past 14 years
for research purpose. On the other hand, to design the infras-
tructure in a changing climate, it is vital to develop a nonsta-
tionary model to fit the extreme daily rainfall by modelling
present trend in the observed extreme daily rainfall. There
is an urgent need for the public authorities in the country to
improve monitoring, modelling, and forecasting techniques in
extreme daily rainfall in order to develop more effective flood
protection measures and management. Findings of this study
are expected to make significant contribution to the study area
by increasing the understanding of nonstationarity of extreme
rainfall in Klang Valley, Malaysia.
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Roy, René and Bobée, Bernard. Generalized maximum likeli-
hood estimators for the nonstationary generalized extreme value
model, Water Resources Research, Vol. 43, No. 3, 2007.

[2] Villarini, Gabriele and Smith, James A and Napolitano,
Francesco. Nonstationary modeling of a long record of rainfall
and temperature over Rome, Advances in Water Resources, Vol.
33, No. 10, 1256–1267, 2010.

[3] Salas, Jose D and Obeysekera, Jayantha. Revisiting the concepts
of return period and risk for nonstationary hydrologic extreme
events, Journal of Hydrologic Engineering, Vol. 19, No. 3, 554–
568, 2014.

[4] Milly, Paul CD and Betancourt, Julio and Falkenmark, Ma-
lin and Hirsch, Robert M and Kundzewicz, Zbigniew W and
Lettenmaier, Dennis P and Stouffer, Ronald J and Dettinger,
Michael D and Krysanova, Valentina. On critiques of “Station-
arity is dead: Whither water management?, Water Resources
Research, Vol. 51, No. 9, 7785–7789, 2015.

[5] Ganguli, Poulomi and Coulibaly, Paulin. Does Nonstation-
arity in Rainfall Requires Nonstationary Intensity-Duration-
Frequency Curves?, Hydrology and Earth System Sciences, Vol.
21, 6461–6483, 2017.
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