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Abstract  The control chart is an important tool in 
multivariate statistical process control (MSPC), which for 
monitoring, control, and improvement of the process 
control. In this paper, we propose six types of copula 
combinations for use on a Multivariate Exponentially 
Weighted Moving Average (MEWMA) control chart. 
Observations from an exponential distribution with 
dependence measured with Kendall’s tau for moderate and 
strong positive and negative dependence (where 

) among the observations were generated by 
using Monte Carlo simulations to measure the Average 
Run Length (ARL) as the performance metric and should 
be sufficiently large when the process is in-control on a 
MEWMA control chart. In this study, we develop an 
approach performance on the MEWMA control chart 
based on copula combinations by using the Monte Carlo 
simulations.The results show that the out-of-control (ARL1) 
values for were less than for  in almost 
all cases. The performances of the 
Farlie-Gumbel-Morgenstern Ali-Mikhail-Haq copula 
combination was superior to the others for all shifts with 
strong positive dependence among the observations and 

. Moreover, when the magnitudes of the shift were 
very large, the performance metric values for observations 
with moderate and strong positive and negative 
dependence followed the same pattern.  

Keywords  Marginal, Joint Distribution, Multivariate 
Control Chart, Monte Carlo Simulation 

1. Introduction
Multivariate Statistical Process Control (MSPC) is an 

important method for process monitoring, control and 
improvement in many areas such as engineering, 
economics, environmental statistics, finance and etc. For 
example, in automotive production quality control depends 
on correlated variables such as the lifetimes of the 
components in the engine, etc. A control chart is a common 
tool for MSPC for detecting changes in the vector means of 
the process. Multivariate control charts are generalizations 
of their univariate counterparts [1]. Hotelling’s T2 was the 
first multivariate control chart [2], followed by the 
Multivariate Exponentially Weighted Moving Average 
(MEWMA) control chart as a better alternative for 
detecting small shifts in the process vector mean [3,4]. 
Most multivariate detection procedures are based on the 
assumption that the observations are independent and 
identically distributed (i.i.d.) and follow a multivariate 
normal distribution. However, many processes are 
non-normal and correlated, so multivariate control charts 
need to be able to cope with related joint distributions. 
Hence, Kuvattana et al. [5] and Sukparungsee et al. [6] 
introduced the copula to address this requirement. 

Copulas are functions that join multivariate distributions 
to their one-dimensional marginal distribution functions in 
which the one-dimensional margins are uniform on the 
interval (0,1) [7]. They are used to explain the dependence 
between random variables and are based on a 
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representation of Sklar’s theorem [8]. A new way of 
constructing asymmetric copulas was introduced by 
Mukherjee et al. [9], and later on copulas have been applied 
to MSPC [10]. Several other studies have proposed and 
compared the performance of bivariate copulas on the 
multivariate control charts [11-14]. Herein, we present the 
efficiency of the combinations of bivariate copulas 
constructed for shifts in the process vector mean on a 
MEWMA control chart when observations follow an 
exponential distribution. 

2. Research Methodology 
This paper is organized into the following sections: in 

section 2.1 the multivariate exponentially weighted 
moving average (MEWMA) control chart. Section 2.2, we 
review copulas function and constructing bivariate 
copulas. Section 2.3 describes the dependence measure of 
data and finally section 2.4 provides the ARL and the 
simulation study.  

2.1. The Multivariate Exponentially Weighted Moving 
Average (MEWMA) Control Chart 

The MEWMA control chart was first developed by 
Lowry et al. [4]. The given observations  from a 
d-variate Gaussian distribution , for i = 1,2,. . . , 
can be defined as 

             (1) 

where  is a vector of variable values from the data and 

 is a diagonal matrix with entries , for 

 and .  
The quantity plotted on the control chart is 

,                  (2) 

where 
 

When on the interval (0,1) (as 
assumed in this study), the control chart signals a shift in 
the mean vector when  where H is the control 

limit chosen for the desired in-control process. Generally, 
the Average Run Length (ARL) can be used to measure the 
performance of a MEWMA control chart. It depends on the 
degree of dependence between the variables measured 
using the covariance matrix  and the scalar-weighted 

 associated with the past observations. We consider a 
bivariate EWMA control chart and the control limit H for 
the in-control process ARL0 = 370. 

2.2. Copulas Function and Constructing Bivariate 
Copulas 

Theoretically, for the copula function according to 
Sklar’s theorem [8] for a bivariate case, let X and Y be 
continuous variables with joint distribution function G and 
marginal cumulative distributions and , 
respectively. Consequently,  with 
copula  where  is a parameter of the 
copula. Theoretically, let A and B be bivariate copulas. It 
follows that , where 

is a copula with parameters  and  

[15]. If , then C1,1 = A, and if  then 
C0,0 = B. Similarly, if C(u, v) ≠ C(v, u) we have an asymmetric 
copula. 

In accordance with Khoudraji’s device [16], let C be 
symmetric copula , where  is independence 
copula. A family of asymmetric copulas with 

parameters ,  that includes C as a 
limiting case is given by 

.       (3) 

2.3. Dependence Measure of the Data 

Generally, a copula can be used in the study of the 
dependence of association between random variables by 
Kendall’s tau, which we implemented in this study 
(Table-1). Let X and Y be continuous random variables 
with copula C, then Kendall’s tau is given by 

  

Table 1.  Kendall’s tau of copula function 

Copula Type Kendall’s tau Parameter space of  

Clayton Asymmetric   

Frank Asymmetric   

FGM Symmetric  [-1,1] 

AMH Symmetric  [-1,1] 

 

iZ
Λ
0 1λ≤ ≤
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2.4. The ARL and the Simulation Study 

Theoretically, the ARL is an average number of points 
that must be plotted before the out-of-control condition 
occurs. ARL is classified into ARL0 and ARL1. ARL0 is the 
average number of observations before the first 
out-of-control point, while ARL1 is the average number of 
observations when the process is out-of-control. The 
expectations of ARL0 and ARL1 can be respectively 
expressed as 

    for           (4) 

    for           (5) 

where  is the change point time,  is the stopping time, 
and  is the expectation under the assumption that 
the change point occurs at  

We ran a Monte Carlo simulation using R statistical 
software [17-20] with the 50,000 rounds and a sample size 
of 6,000. The observations were generated from a copula 
based on an exponential distribution with mean = 1 (for the 
in-control process) and shifts at level 0.01, 0.05, 0.1, 0.5, 1, 

and 5 (for the out-of-control process). The performance of 
the MEWMA control chart was assessed for  = 0.05 and 
0.10. For all combinations of copulas, setting  
corresponds to Kendall’s tau for moderate and strong 
positive and negative dependence ( = 0.5, -0.8). 

3. Results 
The simulation results are reported in Tables 2 to 9, in 

which the results are only empirical. The aim of the study 
was to optimize the parameters for constructing bivariate 
copulas ( ), as shown in Equation (3), for which we 
used the Maximum pseudo-likelihood estimator method 
[21]. For the in-control process on the MEWMA control 
chart, the desired ARL0 = 370 was set for each copula 
combination. The results in Tables 2 and 3 indicate 
moderate positive dependence among the observations 
( ), Tables 4 and 5 strong positive dependence 
( ), Tables 6 and 7 moderate negative dependence 
( ), and Tables 8 to 9 show strong negative 
dependence ( ). 

Table 2.  ARL1 of the MEWMA control chart with moderate positive dependence (

 

= 0.5,

 

= 0.05) 

Shift 
Copula combinations 

[1] [2] [3] [4] [5] [6] 
0.01 329.14 330.20 329.25 332.24 332.61 329.24 
0.05 236.15 240.22 233.78 242.38 234.52 241.08 
0.10 194.51 197.77 194.46 200.24 197.11 199.02 
0.50 12.74 14.41 13.39 10.27 12.87 10.48 
1.00 1.74 1.92 1.81 2.10 1.70 2.19 
5.00 1.02 1.02 1.09 1.14 1.07 1.03 
UCL 10.69 12.24 11.21 14.03 10.66 15.30 

 0.566 0.858 0.953 0.855 0.161 0.045 
 0.617 0.466 0.906 0.841 0.128 0.032 

Note that: Copula combinations i.e. 
[1] Clayton × FGM  [2] Clayton × Frank [3] Clayton × AMH  [4] FGM × Frank [5] FGM × AMH  [6] Frank × AMH 

Table 3.  ARL1 of the MEWMA control chart with moderate positive dependence (

 

= 0.5,

 

= 0.10) 

Shift 
Copula combinations 

[1] [2] [3] [4] [5] [6] 

0.01 330.39 332.88 332.15 334.11 333.3 332.28 

0.05 243.41 246.95 245.29 248.99 242.75 251.73 

0.10 204.81 209.86 137.03 211.93 208.05 211.82 

0.50 15.30 16.52 20.87 17.30 15.69 11.86 

1.00 2.06 2.27 2.16 2.43 2.03 2.52 

5.00 1.02 1.03 1.01 1.04 1.09 1.20 

UCL 13.69 15.56 14.26 17.77 13.73 19.35 

 0.566 0.858 0.953 0.855 0.161 0.045 

 0.617 0.466 0.906 0.841 0.128 0.032 

Note that: Copula combinations i.e. 
[1] Clayton × FGM [2] Clayton × Frank [3] Clayton × AMH  [4] FGM × Frank  [5] FGM × AMH [6] Frank × AMH 

 



 Mathematics and Statistics 8(5): 520-526, 2020 523 
 

Table 4.  ARL1 of the MEWMA control chart with strong positive dependence (

 

= 0.8,

 

= 0.05) 

Shift 
Copula combinations 

[1] [2] [3] [4] [5] [6] 

0.01 329.43 331.64 328.91 334.11 326.23 331.25 

0.05 237.85 243.71 238.09 244.72 210.57 243.13 

0.10 194.65 203.84 196.25 205.23 126.87 202.94 

0.50 15.03 16.48 14.07 17.48 7.84 11.83 

1.00 2.01 2.36 1.93 2.47 1.67 2.47 

5.00 1.03 1.07 1.10 1.10 1.02 1.04 

UCL 13.11 17.84 11.99 20.52 10.24 20.70 

 0.457 0.567 0.635 0.95 0.405 0.069 

 0.457 0.779 0.652 0.949 0.676 0.007 

Note that: Copula combinations i.e. 
[1] Clayton × FGM [2] Clayton × Frank [3] Clayton × AMH  [4] FGM × Frank  [5] FGM × AMH  [6] Frank × AMH 

Table 5.  ARL1 of the MEWMA control chart with strong positive dependence (

 

= 0.8,

 

= 0.10) 

Shift 
Copula combinations 

[1] [2] [3] [4] [5] [6] 

0.01 331.30 330.08 333.33 335.59 330.10 336.65 

0.05 246.74 249.45 246.12 256.45 240.26 232.98 

0.10 207.94 211.95 139.75 217.58 203.87 152.70 

0.50 16.52 18.31 10.68 19.68 15.17 13.33 

1.00 2.37 2.67 2.24 2.87 2.01 2.88 

5.00 1.04 1.08 1.13 1.12 1.00 1.32 

UCL 16.57 22.50 15.15 26.31 13.22 26.65 

 0.457 0.567 0.635 0.95 0.405 0.069 

 0.457 0.779 0.652 0.949 0.676 0.007 

Note that: Copula combinations i.e. 
[1] Clayton × FGM [2] Clayton × Frank [3] Clayton × AMH  [4] FGM × Frank  [5] FGM × AMH  [6] Frank × AMH 

Table 6.  ARL1 of the MEWMA control chart with moderate negative dependence (

 

= -0.5,

 

= 0.05) 

Shift 
Copula combinations 

[1] [2] [3] [4] [5] [6] 

0.01 324.71 328.54 326.98 325.05 330.92 328.38 

0.05 232.22 235.22 235.14 233.45 235.47 235.28 

0.10 192.74 192.98 191.74 191.16 193.04 193.90 

0.50 14.47 16.13 14.30 15.92 13.97 16.06 

1.00 1.85 2.45 1.82 2.36 1.80 2.29 

5.00 1.02 1.02 1.02 1.02 1.02 1.02 

UCL 11.32 14.53 11.1 13.95 10.97 13.40 

 0.982 0.999 0.99 0.919 1.000 0.149 

 0.999 0.999 0.998 1.000 0.915 0.029 

Note that: Copula combinations i.e. 
[1] Clayton × FGM [2] Clayton × Frank [3] Clayton × AMH  [4] FGM × Frank  [5] FGM × AMH  [6] Frank × AMH 
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Table 7.  ARL1 of the MEWMA control chart with moderate negative dependence (

 

= -0.5,

 

= 0.10) 

Shift 
Copula combinations 

[1] [2] [3] [4] [5] [6] 

0.01 328.63 323.78 326.92 330.17 326.36 326.79 

0.05 233.24 228.14 233.79 231.26 233.64 227.13 

0.10 191.54 185.83 190.78 187.44 191.02 186.32 

0.50 16.39 16.20 16.10 16.32 16.11 16.27 

1.00 2.26 2.80 2.22 2.73 2.19 2.65 

5.00 1.02 1.03 1.02 1.03 1.02 1.02 

UCL 14.25 17.68 14.00 17.14 13.86 16.38 

 0.982 0.999 0.990 0.919 1.000 0.149 

 0.999 0.999 0.998 1.000 0.915 0.029 

Note that: Copula combinations i.e. 
[1] Clayton × FGM [2] Clayton × Frank [3] Clayton × AMH  [4] FGM × Frank  [5] FGM × AMH  [6] Frank × AMH 

Table 8.  ARL1 of the MEWMA control chart copulas with strong negative dependence (

 

= -0.8,

 

= 0.05) 

Shift 
Copula combinations 

[1] [2] [3] [4] [5] [6] 

0.01 326.37 328.95 327.01 326.35 326.71 322.98 

0.05 234.28 232.98 232.22 235.52 235.31 233.37 

0.10 192.17 191.68 194.22 192.31 194.65 191.90 

0.50 14.44 16.25 14.31 15.92 14.28 15.89 

1.00 1.84 2.58 1.82 2.50 1.82 2.42 

5.00 1.02 1.01 1.01 1.01 1.02 1.01 

UCL 11.32 15.53 11.09 14.95 11.12 14.25 

 0.996 1.000 0.995 0.806 0.999 0.261 

 0.987 0.858 0.998 0.999 0.999 0.001 

Note that: Copula combinations i.e. 
[1] Clayton × FGM [2] Clayton × Frank [3] Clayton × AMH [4] FGM × Frank  [5] FGM × AMH  [6] Frank × AMH 

Table 9.  ARL1 of the MEWMA control chart with strong negative dependence (

 

= -0.8,

 

= 0.10) 

Shift 
Copula combinations 

[1] [2] [3] [4] [5] [6] 

0.01 326.44 327.60 325.84 324.42 328.11 327.16 

0.05 234.44 226.75 232.27 228.30 235.30 229.35 

0.10 193.59 187.43 190.09 186.49 192.91 185.96 

0.50 16.35 15.83 16.02 15.91 16.34 15.99 

1.00 2.26 2.88 2.22 2.82 2.22 2.75 

5.00 1.02 1.01 1.02 1.01 1.02 1.01 

UCL 14.25 18.77 13.98 18.12 14.05 17.40 

 0.996 1.000 0.995 0.806 0.999 0.261 

 0.987 0.858 0.998 0.999 0.999 0.001 

Note that: Copula combinations i.e. 
[1] Clayton × FGM [2] Clayton × Frank [3] Clayton × AMH [4] FGM × Frank  [5] FGM × AMH  [6] Frank × AMH 
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The results in Tables 2 to 9 show that the ARL1 values 
for  were less than those for  in almost 
all cases. The results in Tables 2 and 3 indicate that the 
Clayton Ali-Mikhail-Haq (AMH) copula combination 
was superior to the others in almost all cases. Meanwhile, 
with strong positive dependence ( ) and , 
Farlie-Gumbel-Morgenstern (FGM) AMH attained the 
minimum ARL1 with all shifts (Table 4). Meanwhile, for 
moderate negative dependence ( ), Clayton
FGM attained the minimum ARL1 with shift values at 0.01 
and 0.05 (Table 6). For the results for strong negative 
dependence ( ) and  (Table 8), the 
performance of FGM AMH was superior to the others 
with shift values at 0.5 and 1. However, when the 
magnitude of the shift was large ( ), the performances 
of all of the copula combinations for moderate and strong 
positive and negative dependence were the same. 

4. Conclusions 
In this study, we investigated closed-form 

approximations of the ARL for MEWMA control charts 
using bivariate copulas constructed via Khoudraji’s device, 
and we used Monte Carlo simulation when the marginal of 
the variables was exponential with . The simulation 
results suggest that there were no meaningful differences 
between the performances of the bivariate copulas at a very 
large shift ( ) when the observations had moderate and 
strong positive and negative dependence. In addition, the 
performances of the constructed bivariate copulas were 
superior to a single copula [5] for a moderate shift in a 
process on a MEWMA control chart. For further research, 
we could use the real data to compare the simulation 
results. 
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