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Abstract  The accuracy of geometric construction is 

one of the important characteristics of mathematics and 

mathematical skills. However, in geometrical 

constructions, there is often a problem of accuracy. On the 

other hand, so-called 'Optical accuracy' appears, which 

means that the construction is accurate with respect to the 

drawing pad used. These “optically accurate” constructions 

are called approximative constructions because they do not 

achieve exact accuracy, but the best possible 

approximation occurs. Geometric problems correspond to 

algebraic equations in two ways. The first method is based 

on the construction of algebraic expressions, which are 

transformed into an equation. The second method is based 

on analytical geometry methods, where geometric objects 

and points are expressed directly using equations that 

describe their properties in a coordinate system. In any case, 

we obtain an equation whose solution in the algebraic sense 

corresponds to the geometric solution. The paper provides 

the methodology for solving some specific tasks in 

geometry by means of algebraic geometry, which is related 

to cubic and biquadratic equations. It is thus focusing on 

the approximate geometrical structures, which has a 

significant historical impact on the development of 

mathematics precisely because these tasks are not solvable 

using a compass and ruler. This type of geometric problems 

has a strong position and practical justification in the area 

of technology. The contribution of our work is so in 

approaching solutions of geometrical problems leading to 

higher degrees of algebraic equations, whose importance is 

undeniable for the development of mathematics. Since 

approximate constructions and methods of solution 

resulting from approximate constructions are not common, 

the content of the paper is significant. 
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1. Introduction 

The accuracy of geometric constructions is one of the 

most important characteristics in mathematics, but 

geometric tasks often result in two types of accuracy 

problems. The first level is perfect accuracy, which means 

that the object can be infinitely expanded or shrunk, but the 

positional features of its points do not change. This is the 

result of a logical sequence of steps used in its construction. 

The basic foundation here is a finite set of true statements, 

which are based on the Greek-Hellenistic foundations of 

geometry [1]. On the other hand, there is the so-called 

optical precision, which means that the design is accurate 

with respect to the drawing board. To consider such a 

construction as accurate with respect to the drawing board, 

the deviation must not be greater than the design tool, and it 

must be implemented through a finite number of steps. 

These optically precise structures are termed approximate 

constructions because they do not achieve perfect accuracy, 

but the best possible approximation. In general, 

approximate structures also include any structures that are 

accurate, but non-Euclidean, i.e. the design uses some 

special curves (e.g. a fixed conic section) or another 

instrument (e.g. a thread, etc.). However, due to the current 

onset of computer geometry, approximative constructions 

are being phased out. 

Many solutions of historical tasks, such as the trisection 

of an angle, or the quadrature of the circle, are solved by 

curves. These curves can be approximated through a point 

cloud, which means that the curves are drawn by means of 

their individual points and we are trying to determine their 

intersection. Since the search for the intersection in the 

point cloud effectively means a search for the points that 

merge into a single point, it is more preferable to 

approximate the curve only in a certain limited space 

around the projected intersection. In addition to curve 

approximation in the limited space, a mesh grid method can 

be used to determine the points of a curve more easily. This 
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curve approximation is possible thanks to the use of 

straight lines and circular curves. The approximation 

method also differs according to the required level of 

accuracy. Apart from the construction itself, this method 

also offers the possibility of exploring various curves and 

their properties. 

In addition to curve approximation in the limited space, a 

mesh grid method can be used to determine the points of a 

curve more easily. In technical practice, graph paper is 

used for complex curves. Graph paper has a square grid. 

This grid helps us achieve a better orientation on paper 

because the grid points are firmly locked. Thanks to this 

feature of grid points, we can better orientate on the plane, 

which makes approximate constructions more accurate and 

easier. Among other things, the search for the intersections 

of the curves under consideration with the grid points 

provides an insight into diophantine geometry, which is 

used in the number theory, study of elliptic curves, but also 

in quantum systems. 

Procedures similar to those used in arithmetics, i.e. the 

basic operations such as a sum and difference, 

multiplication and division, or exponentiation and square 

roots, can also be considered in geometric designs. Just like 

the arithmetic expressions gradually give way to algebraic 

equations, geometric tasks may lead to the theory of 

algebraic equations. In the work Geometry [2] by René 

Descartes, we see how Descartes uses the known 

geometrical methods to construct the lines and how he 

algebraizes them. Subsequently, he concludes that the 

algebraic equations that can be decomposed to the simplest 

elements, are associated with geometric constructions. If 

these elements only include a quadratic form, which can be 

solved by using the roots, these tasks are solvable by 

classical geometry using a compass and ruler. These 

considerations have so far only been verbalized as 

presumptions and they only pointed to the tasks that can be 

solved with certainty. However, they have not contributed 

to the solution of unsolved tasks. On the other hand, it is 

already known, which tasks are solvable by a compass and 

ruler, and what the conditions of solvability are. For this, 

we can use the elements of analytical geometry, which are 

applied on the basic principles of Euclidean constructions. 

Let us consider the lines that can be expressed using a 

linear equation in the form 

𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0, 

and a circle expressed by a quadratic equation 

(𝑥 − 𝑚)2 + (𝑦 − 𝑛)2 = 𝑟2. 

And gradually apply these equations on the principles of 

Euclidean constructions: 

1. We can construct a line determined by two points: if 

the points [𝑥1, 𝑦1]  and [𝑥2, 𝑦2]  are defined in the 

coordinate system, then the straight line passing 

through these points has the form of 

𝑥(𝑦2 − 𝑦1) + 𝑦(𝑥2 − 𝑥1) + (𝑥1𝑦2 − 𝑥2𝑦1) = 0. 

2. Construct an intersection of two divergent lines: if we 

have two divergent straight lines defined by the 

equations 

𝑎1𝑥 + 𝑏1𝑦 + 𝑐1 = 0, 𝑎2𝑥 + 𝑏2𝑦 + 𝑐2 = 0, 

then the point defined as the intersection of these lines has 

the coordinates 

[
𝑏1𝑐2−𝑏2𝑐1

𝑎1𝑏1−𝑎2𝑏2
, −

𝑎1𝑐2−𝑎2𝑐1

𝑎1𝑏1−𝑎2𝑏2
]. 

3. Construct a circle with a given center and radius 

(𝑥 − 𝑚)2 + (𝑦 − 𝑛)2 = 𝑟2. 

4. Construct the intersection of a straight line and circle: 

we use the above equations as the equations 

representing a circle and straight line: 

𝑥 = −
𝑎(𝑎𝑚+𝑏𝑛+𝑐)±𝑏√(𝑎2+𝑏2)𝑟2−(𝑎𝑚+𝑏𝑛+𝑐)2

𝑎2+𝑏2 + 𝑚, 

𝑦 = −
𝑏(𝑎𝑚+𝑏𝑛+𝑐)±𝑎√(𝑎2+𝑏2)𝑟2−(𝑎𝑚+𝑏𝑛+𝑐)2

𝑎2+𝑏2 + 𝑛. 

5. Construct the intersection of two set circles: the 

circles are defined by a system of equations 

(𝑥 − 𝑚1)2 + (𝑦 − 𝑛1)2 = 𝑟1
2, 

(𝑥 − 𝑚2)2 + (𝑦 − 𝑛2)2 = 𝑟2
2. 

The solution of this system and the relevant conditions 

for the solution can be determined by rearranging the first 

equation and using the second equation to express the 

relation for 𝑦: 

(𝑥 − 𝑚1)2 = 𝑟1
2 − (𝑦 − 𝑛1)2, 

𝑦 = 𝑚2 ± √𝑟2
2 − (𝑥 − 𝑚2)2. 

For example, let us choose the positive solutions (we 

could proceed analogically in the case of negative 

solutions): 

(𝑥 − 𝑚1)2 = 𝑟1
2 − (𝑚2 + √𝑟2

2 − (𝑥 − 𝑚2)2 − 𝑛1)
2

. 

By reverse squaring, we get an equation of the fourth 

degree 

(2𝑥2 − 2𝑥(𝑚1 + 𝑚2) + 𝑚1
2 + 𝑚2

2 − (𝑚2 − 𝑛1) − 𝑟2
2 − 𝑟1

2)2

4(𝑚2 − 𝑛1)2  

= 𝑟2
2 − (𝑥 − 𝑚2)2. 

It should be pointed out that when solving this type of 

equation of the fourth degree, we get a quadratic equation 

when suitable substitution is used. As is the case with the 

straight line and circle, this points to the possibility of only 

construct the root, or possibly compound root, values even 

with two circles method. 

This knowledge of geometric structures and basic 

knowledge of algebraic structures can help us define the 

theory of construction of geometric objects using a 

compass and ruler, which is independent of the skills and 

knowledge of a geometrist, but its limits stem directly from 

the properties of the algebraic body. Each geometric task 
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begins with the baseline state, in which the fixed points 

determine the initial structure – the so-called minimum 

body 𝑇0 – consisting of real numbers. Then all other 

Euclidean points belong to the same minimum body 𝑇0 or 

the body 𝑇1, which was created as an adjunct of the clearly 

defined square of a positive element from 𝑇0. 

2. Solution of Algebraic Equations 

Geometric tasks correspond to algebraic equations in 

two ways. The first method is based on the structure of 

algebraic expressions, which change into an equation. The 

second method is based on the methods of analytic 

geometry where the geometric objects and points are 

directly expressed by the equations that describe their 

properties in a coordinate system. In both cases, we get an 

equation whose solution in the algebraic sense corresponds 

to the solution in the geometric sense. 

In the equation of the first degree in the form 𝑎𝑥 + 𝑏 =
0  where 𝑎, 𝑏 ∈ ℝ, the solution can be found simply by 

rearranging the equation into the form 𝑥 = −
𝑏

𝑎
. In the 

equation of the second degree in the form 𝑎𝑥2 + 𝑏𝑥 + 𝑐 =
0 , 𝑎, 𝑏, 𝑐 ∈ ℝ  we make a rearrangement into the form 

𝑥2 + 𝑝𝑥 + 𝑞 = 0  where 𝑝 =
𝑏

𝑎
, 𝑞 =

𝑐

𝑎
. Then, we use a 

rearrangement using the identity (𝑚 + 𝑛)2 = 𝑚2 +

2𝑚𝑛 + 𝑛2 and get the equation in the form (𝑥 +
𝑝

2
)

2

+

𝑞 −
𝑝2

4
= 0. Thence 𝑥1,2 =

−𝑝±√𝑝2−4𝑞

2
, and the expression 

𝑞 −
𝑝2

4
= 𝐷  is the so-called discriminant of a quadratic 

equation. If the discriminant assumes negative values, the 

solution is in the set of complex numbers. The second way 

to determine the roots of a quadratic equation is the use of 

Viet relations [3] 𝑥2 + 𝑝𝑥 + 𝑞 = (𝑥 − 𝑥1)(𝑥 − 𝑥2) = 0. 
Then 𝑥2 − (𝑥2 + 𝑥1)𝑥 + 𝑥1𝑥2 = 0.  By way of 

comparison, we get the relations 𝑥2 + 𝑥1 = −𝑝, 𝑥1𝑥2 = 𝑞. 

Based on these findings, we have several ways to 

graphically represent the quadratic equation: 

1. The quadratic equation can be interpreted as a 

parabolic equation whose intersections with the axis 

𝑥  (line 𝑦 = 0 ) are the roots of the considered 

equation. For this solution, we need to know the 

coordinates of the vertex of the parabola, which can 

be determined from the quadratic equation once 

rearranged into the form (𝑥 +
𝑝

2
)

2

+ 𝑞 −
𝑝2

4
= 0. 

Then, the vertex of the parabola in the Cartesian 

coordinates is 𝑉 [−
𝑝

2
, 𝑞 −

𝑝2

4
]. 

2. If the quadratic equation is replaced by a Viet relation 

𝑥2 + 𝑥1 = −𝑝,  𝑥1𝑥2 = 𝑞,  we can interpret these 

relations as a task to determine the intersections of the 

lines and the hyperbole defined by the equations 

𝑥 + 𝑦 = −𝑝,  𝑥𝑦 = 𝑞.  The intersections with the 

coordinates [𝑥, 𝑦]  determine the solutions 𝑥 = 𝑥1 , 

𝑦 = 𝑥2 and 𝑥 = 𝑥2, 𝑦 = 𝑥1. 

These graphical methods are disadvantageous when 

there is no solution in the set of real numbers and the 

intersection of the considered geometric shapes does not 

exist. Let us now consider an equation of the third degree in 

the form 𝑎𝑧3 + 𝑏𝑧2 + 𝑐𝑧 + 𝑑 = 0 where 𝑎, 𝑏, 𝑐, 𝑑, 𝑧 ∈  ℝ. 

By substituting 𝑥 = 𝑧 −
𝑏

3𝑎
, we rearrange the equation to 

the form 𝑥3 + 𝑝𝑥 + 𝑞 = 0 and introduce substitution with 

two new unknowns 𝑥 = 𝑢 + 𝑣 . Then (𝑢 + 𝑣)3 +
𝑝(𝑢 + 𝑣) + 𝑞 = 0 , and after rearrangement, we get 

𝑢3 + 𝑣3 + (𝑢 + 𝑣)(3𝑢𝑣 + 𝑝) + 𝑞 = 0 . Equality is also 

maintained with the conditions 𝑢3 + 𝑣3 = −𝑞, 𝑢𝑣 = −
𝑝

3
 

that resemble the Viet relations for quadratic equations. To 

use these, we must rearrange them into the form 𝑢3 +

𝑣3 = −𝑞, 𝑢3𝑣3 = −
𝑝3

27
. We can now use the substitution 

𝑢3 = 𝑦1 , 𝑣3 = 𝑦2  to obtain the Viet relations for the 

quadratic equation in the form 𝑦1 + 𝑦2 = −𝑞 , 𝑦1𝑦2 =

−
𝑝3

27
. From the above, we can make a quadratic equation (a 

quadratic resolvent of the cubic equation) 𝑦2 + 𝑞𝑦 −
𝑝3

27
=

0. Then, 𝐷 = 𝑞2 +
4𝑝3

27
 is the discriminant of the quadratic 

resolvent. Subsequently, we get the roots 𝑦1,2 =
−𝑞±√𝐷

2
 

and the solution of the quadratic equation can be arrived at 

by using the substitution 𝑥𝑘 = 𝑢𝑘 + 𝑣𝑘, 𝑘 = 1,2,3. Thus, 

we get the equation 𝑢3 − 𝑦1 = 0 , 𝑣3 − 𝑦2 = 0 . These 

tasks can then be seen as an extension of the equation 

𝜀3 − 1 = 0. One root 𝜀1 = 1 can be determined trivially, 

and by decomposing it into the product form, we get the 

relation (𝜀 − 1)(𝜀2 + 𝜀 + 1) = 0.  By solving this 

quadratic equation, we get the remaining roots 𝜀2,3 =
−1±𝑖√3

2
. Let us then return to the solution in the form 

𝑥𝑘 = 𝑢𝑘 + 𝑣𝑘 , 𝑘 = 1,2,3.  Then 𝑢 = √−
𝑞

2
+ √𝑞2 +

4𝑝3

27

3

, 

𝑣 = √−
𝑞

2
− √𝑞2 +

4𝑝3

27

3

 and we get 𝑢1 = 𝑢,  𝑢2 = 𝑢𝜀2, 

 𝑢3 = 𝑢𝜀3, 𝑣1 = 𝑣, 𝑣2 = 𝑣𝜀3, 𝑣3 = 𝑣𝜀2 as the solutions. 

The properties of the solutions depend on the discriminant. 

If 𝐷 > 0, the cubic equation has one real root and the other 

two roots are complex-compound. If 𝐷 = 0, the equation 

has all three real roots, and the root is double or triple. If 

𝐷 < 0, the equation has three different but real roots. 

A cubic equation can also be solved trigonometrically 

even if the quadratic discriminant resolvent is a negative 

number (this case is historically termed as cassus 

irreducibilis [4]). Our task is to determine the third root of 

a complex number. In this case, it is appropriate to use a 

goniometric form of the complex number 𝑦1 = −
𝑞

2
+

𝑖√𝐷 = 𝑟(𝑖 sin 𝜑 + cos 𝜑),  and the equality of complex 

numbers results in 𝑟 sin 𝜑 = √𝐷,  𝑟 cos 𝜑 = −
𝑞

2
.  By 

squaring and summing these equalities, we determine 

𝑟 = √(
𝑞

2
)

2

− 𝐷 , and after rearrangement, we get 𝑟 =
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√−
𝑝3

27
. We then continue with the solution 𝑦1 =

√−
𝑝3

27
(cos 𝜑 + 𝑖 sin 𝜑) , 𝑦2 = √−

𝑝3

27
(cos 𝜑 − 𝑖 sin 𝜑) . 

Then 𝑦1 = 𝑢𝑘
3, 𝑦2 = 𝑣𝑘

3. When using the Moivre's formula 

[5], we get 𝑘 = 1,2,3: 

𝑢𝑘 = √−
𝑝

3
(cos (

𝜑+2(𝑘−1)𝜋

3
) + 𝑖 sin (

𝜑+2(𝑘−1)𝜋

3
)), 

𝑣𝑘 = √−
𝑝

3
(cos (

𝜑+2(𝑘−1)𝜋

3
) − 𝑖 sin (

𝜑+2(𝑘−1)𝜋

3
)). 

Then 𝑥𝑘 = √−
𝑝

3
cos (

𝜑+2(𝑘−1)𝜋

3
).  In addition to the 

algebraic solution, one can also point to the geometric 

method using the conic sections, which is used by the 

Persian mathematician Omar Chajjan [1]. Take the 

equation 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 = 0,  which we divide by 

the expression 𝑎𝑥 and we get the relation 𝑥2 +
𝑏

𝑎
𝑥 +

𝑐

𝑎
+

𝑑

𝑥
= 0 . We then rearrange the equation so that the 

expressions on the right and left are positive, and we get the 

equation 𝑥2 + 𝑝𝑥 + 𝑞 =
𝑟

𝑥
. We then look for the common 

point of the curves 𝑦1 = 𝑥2 + 𝑝𝑥 + 𝑞, 𝑦1 =
𝑟

𝑥
. 

Let us now consider an equation of the fourth degree in 

the form 𝑧4 + 𝑎𝑧3 + 𝑏𝑧2 + 𝑐𝑧 + 𝑑 = 0 , which we 

rearrange by substitution 𝑥 =
𝑧−𝑎

4
 into the form 𝑥4 +

𝐴𝑥2 + 𝐵𝑥 + 𝐶 = 0. Similarly to the cubic equation, we 

use substitution 𝑥 = 𝑢 + 𝑣 + 𝑤 with more variables and 

we get the equation 

(𝑢2 + 𝑣2 + 𝑤2)2 + 4(𝑢2𝑣2 + 𝑢2𝑤2 + 𝑣2𝑤2) +
𝐴(𝑢 + 𝑣 + 𝑤) + 𝐶 + (𝑢𝑣 + 𝑢𝑤 + +𝑣𝑤)[4(𝑢2 + 𝑣2 +

𝑤2) + 2𝐴] + (𝑢 + 𝑣 + 𝑤)(8𝑢𝑣𝑤 + 𝐵) = 0. 

Let us determine the conditions 𝑢2 + 𝑣2 + 𝑤2 = −
𝐴

2
, 

𝑢2𝑣2 + 𝑢2𝑤2 + 𝑣2𝑤2 =
𝐴2−4𝐶

16
, 𝑢𝑣𝑤 = −

𝐵

8
 and just like 

in the cubic equation where the quadratic equation is 

determined by the Viet relations, we will do the same for 

the construction of cubic equation 𝑦3 +
𝐴

2
𝑦2 +

𝐴2−4𝐶

16
𝑦 −

𝐵2

64
= 0. This cubic equation is an Euler resolvent [6] of an 

algebraic equation of the fourth degree. The roots are 

𝑦1 = 𝑢2, 𝑦2 = 𝑣2, 𝑦3 = 𝑤2  and the relations can be 

written as 𝑧1 = √𝑦1 + √𝑦2 + √𝑦3, 𝑧2 = √𝑦1 − √𝑦2 −

√𝑦3, 𝑧3 = −√𝑦1 + √𝑦2 − √𝑦3 , 𝑧4 = −√𝑦1 − √𝑦2 +

√𝑦3.We see that to solve a fourth degree equation, it is 

necessary to master the methods to solve cubic equations. 

The solution properties depend directly on the solution 

properties of the cubic equation. If the cubic resolvent had 

positive real numbers in all three roots, the solution of the 

contemplated equation would be a quadruplet of real 

numbers. If the cubic equation has real numbers as roots, 

but two roots take negative values, all four roots will have 

complex roots. If the cubic resolvent has two complex roots, 

then all four roots are complex. 

Since the algebraic approach is quite demanding, a 

graphical solution with a circle and a fixed parabola was 

used in the past. Let us consider the equations (𝑥 − 𝑚)2 +
(𝑦 − 𝑛)2 = 𝑟2, 𝑦 = 𝑥2  and 𝑥4 + 𝐴𝑥2 + 𝐵𝑥 + 𝐶 = 0 

while 𝑚, 𝑛 are the coordinates of the circle center and 𝑟 is 

its radius. By rearrangement, we get the relations (𝑥 −
𝑚)2 + (𝑥2 − 𝑛)2 = 𝑟2, 𝑥4 + 𝑥2(1 − 2𝑛) − 2𝑚𝑥 +
𝑚2 + 𝑛2 − 𝑟2 = 0 and by comparing the coefficients, we 

get the necessary data for the geometric solution 𝑚 = −
𝐴

2
, 

𝑛 =
1−𝐴

2
, 𝑟 = √𝐶 −

1−2𝐴+2𝐴2

2
. We see that the geometric 

solution is much faster, but in terms of Euclidean 

constructions, it is tied to the construction of a parabola, 

which is either predetermined, or merely approximated in 

the envisaged solutions. 

For a general solution of the equations of a higher degree, 

algebra does not provide us with predetermined formulas 

as is the case in the fourth degree equations. However, 

special cases of equations of higher degrees are solved, 

such as binomial and trinominal, reciprocal and 

antireciprocal equations. What is more, we need to be able 

to determine whether the equation at least has rational roots 

for the Euclidean structures. Even in the case of cubic 

equations, we transitioned to a simple binomial equation. 

Since it is a low degree equation in an appropriate form, we 

can easily get one solution, and the procedure is aimed at 

the decomposition into a lower degree polynomial. 

Furthermore, when solving cassus irreducibilis, Moivre’s 

formula can be used, which facilitates the calculation of 

any square (square root) of a complex number. By 

combining this knowledge, we can solve the equation 

𝑥𝑛 − 𝑧 = 0, 𝑥, 𝑧 ∈ ℂ. Using the Moivre’s formula, is true 

that 𝑥𝑘 = √|𝑧|𝑛
(cos

𝜑+2𝑘𝜋

𝑛
+ 𝑖 sin

𝜑+2𝑘𝜋

𝑛
)  while 𝑧 = 𝑎 +

𝑏𝑖 , |𝑧| = √𝑎2 + 𝑏2 . As we can see, the solution of a 

binomial equation can be represented on a complex plane 

as a regular 𝑛-gram. 

The equation in the form 𝑥2𝑛 + 𝑥𝑛 − 𝑧 = 0,  𝑥, 𝑧 ∈ ℂ 

is termed trinominal. To solve it, we use substitution 

𝑦 = 𝑥𝑛 and subsequently get a quadratic equation in the 

form 𝑦2 + 𝑦 − 𝑧 = 0 with the roots 𝑦1, 𝑦2. Then, we get 

a pair of binomial equations 𝑥𝑛 − 𝑦1 = 0, 𝑥𝑛 − 𝑦2 = 0. 

With reciprocal equations, we consider an algebraic 

equation in the form 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1+. . . 𝑎1𝑥 + 𝑎0 = 0 

while for 𝑎𝑘 = 𝑎𝑛−𝑘, 𝑘 = 0,1,2, … , 𝑛 we get a reciprocal 

equation of the first degree, and for 𝑎𝑘 = −𝑎𝑛−𝑘 , 

𝑘 = 0,1,2, … . , 𝑛 we get a reciprocal equation of the second 

degree. A reciprocal equation is characterized by symmetry 

in its coefficients. Each reciprocal equation of the second 

degree has a root 𝑥0 = 1  [7]. After dividing it by a 

binomial (𝑥 − 1), we get a reciprocal equation of the first 

degree. Each odd reciprocal equation of the first degree has 

a root 𝑥0 = 1. After dividing it by a binomial (𝑥 − 1), we 

get an even reciprocal equation of the first degree. And, for 

each reciprocal equation of the first degree, the substitution 

𝑦 = 𝑥 +
1

𝑥
 helps us create a new half degree polynomial. If 

the algebraic equation 

𝑓(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1+. . . 𝑎1𝑥 + 𝑎0  with integer 
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coefficients has a rational solution, it has the form of 𝑥 =
𝑝

𝑞
, 

while 𝑝, 𝑞 ∈ ℤ, 𝑝, 𝑞 ≠ 0 and at the same time (𝑝, 𝑞) = 1. 

Then, the root is determined by 𝑝|𝑎𝑛 and 𝑞|𝑎0. 

The knowledge of algebraic structures and solutions of 

algebraic equations is suitable for the solution of geometric 

tasks using a compass and ruler. Next, we will use this 

knowledge to show the Euclidean solvability and 

non-solvability of selected geometric problems in the 

structure of triangles. Therefore, it is necessary to reshape 

the geometric problems into algebraic equations. 

3. Construction of Triangles 

In this section, we address some selected tasks in the 

work [8], which are selected by the author with the aim to 

construct the triangles using the method of algebraic 

geometry. The tasks present the parameters necessary to 

construct the triangles, the triangles are constructible (in an 

Euclidean or approximated way) and the algebraic 

solutions are aiming at an equation of a higher than third 

degree. The constructions are implemented in the 

GeoGebra environment. After each solution with the 

geometric method a solution with the algebraic geometry 

method is presented. 

Task 1. Construct a triangle if |𝐴𝐵| = 𝑎 , |∡𝐵𝐴𝐶| = 𝛼 

and the radius 𝑟 of the circumcircle (𝑎, 𝛼, 𝑟) is known. 

Solution. The initial situation is that we have a sketched 

angle 𝛼,  which is defined by the point 𝐴  and arms 

𝑝, 𝑞.  The center of the incircle is moving on the circle 

𝑘1(𝐴, 𝑟). Then we determine the moving circle 𝑘𝑟1(𝑆, 𝑟), 

𝑆 ∈ 𝑘1. Then, to determine the set of points characteristic 

of the solved constellation of parameters, we will 

determine the auxiliary moving point 𝐵1, which is defined 

as an intersection of the arm 𝑝 of angle 𝛼 and the circle 

𝑘𝑟1 . Subsequently, we determine the circle 𝑘𝑎1(𝐵1, 𝑎) 

from the point 𝐵1. Then, the curve, which is specific to the 

side and circumcircle parameters, is determined by the 

point 𝐶𝑖, 𝐶𝑖 ∈ 𝑘𝑎1 ∩ 𝑘𝑟1. It is true for the sought point 𝐶 

that it is located at the intersection of the specified curve 

and arm 𝑞 of the angle 𝛼. 

 

Figure 1.  When applying the procedure from the searched-for set of 

points of the given properties, we get the curve that meets the desired 

conditions and shows how the radius of the circumcircle, size of the 

opposite side to the angle and the angle itself are related 

As shown in Figure 1, the curve used is composed of a 

circular arc and a straight line segment (if the point 𝐵 is to 

the right of the point 𝐴). On this basis, we can determine 

that the task either has no solution, i.e. the intersection of 

the arm 𝑞 and curve does not exist, or it is in the section 

formed by the circular curve. The second option is that the 

solution exists, but the arm 𝑞 coincides with the part of the 

curve determined by the straight line. In this case, the task 

does not have enough specific parameters and therefore it 

has no solution based on the specified parameters. 

When solving the tasks with algebraic geometry, we use 

the relationship resulting from the sinus formula 2𝑟 =
𝑎

sin 𝛼
. 

However, based on that relationship, we see that the 

specified data are not linearly independent, and we cannot 

identify the other data necessary to construct the sought 

triangle. 

At first glance, the task looks very standard. We have 

three pieces of data that appear to be independent. When 

using the geometric method, we can describe the 

conditions necessary to construct the sought triangle. On 

the other hand, the use of algebraic geometry requires us to 

use the sinus formula that connects the data in a single 

formula, but it lacks the necessary information for the 

required construction. 
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Task 2. Construct a triangle if |𝐵𝐶| = 𝑎, |𝐴𝑆𝑎| = 𝑡𝑎  is 

known, 𝑆𝑎 is the center of the side 𝐵𝐶, and 𝜌 is the radius 

of the incircle (𝑎, 𝑡𝑎, 𝜌). 

Solution. We begin the task by the known dimension of 

the side |𝐵𝐶| = 𝑎 . Consequently, since we know the 

median of this side, we can place the point 𝑆𝑎 , 𝑆𝑎 ∈

𝐵𝐶, |𝐵𝑆𝑎| = |𝑆𝑎𝐶| =
𝑎

2
 on it. Furthermore, the median 𝑡𝑎 

is represented by the circle 𝑘𝑡𝑎(𝑆𝑎 , 𝑡𝑎). We know that the 

center of the incircle 𝑆1  moves on a straight line 𝑝 

parallel to the base, and we know that |𝑝𝐵𝐶| = 𝜌 . 

Furthermore, we know that the sides of the triangle belong 

to the circle 𝑘𝜌1(𝑆1, 𝜌)  with the touching straight lines 

𝑞, 𝑠. Then, it is true for the point 𝐴1 that 𝐴1 ∈ 𝑞 ∩ 𝑠, and 

when moving the circle 𝑘𝜌1 , we get the curve that is 

characteristic of all the triangles, in which we know one 

side and the radius of the incircle. Then, the sought point 𝐴 

is the intersection of this curve and the circle 𝑘𝑡𝑎. 

 

Figure 2.  The construction of the triangle uses a curve, which was 

created based on the parameters of the side |𝐵𝐶| = 𝑎 and the radius of 

the incircle 

Using the curve (Figure 2), we can judge the solvability 

conditions. We see that two solutions are possible in the 

upper half-plane. While two solutions are also possible in 

the lower half-plane, they are symmetrical with respect to 

the midpoint of the line segment 𝐵𝐶. Or, there is a single 

solution in the upper half-plane and no solution in the 

lower half-plane. 

When using algebraic geometry, our solution is based on 

the situation that the median divides the triangle into two 

triangles with the same area because the base is divided in 

half and the triangles have a base of the same length. The 

height of each triangle is the same because it is defined by 

the same point. Then we can determine the equations for 

area using Heron's formula [9] 

𝑆 = √
1

2
(𝑎 + 2𝑐 + 2𝑡𝑎)(𝑐 + 𝑡𝑎)(𝑎 − 𝑐 + 2𝑡𝑎)(𝑎 + 2𝑐 − 𝑡𝑎), 

𝑆 = √
1

2
(𝑎 + 2𝑏 + 2𝑡𝑎)(𝑏 + 𝑡𝑎)(𝑎 − 𝑏 + 2𝑡𝑎)(𝑎 + 2𝑏 − 𝑡𝑎), 

and a formula for the calculation of triangle area, knowing 

the radius of the incircle 2𝑆 = 𝜌(𝑎 + 𝑏 + 𝑐). Then we put 

together the equations: 

𝜌2(𝑎 + 𝑏 + 𝑐)2 = 2(𝑎 + 2𝑐 + 2𝑡𝑎)(𝑐 + 𝑡𝑎)(𝑎 − 𝑐 +
2𝑡𝑎)(𝑎 + 2𝑐 − 𝑡𝑎), 

𝜌2(𝑎 + 𝑏 + 𝑐)2 = 2(𝑎 + 2𝑏 + 2𝑡𝑎)(𝑏 + 𝑡𝑎)(𝑎 − 𝑏 +
2𝑡𝑎)(𝑎 + 2𝑏 − 𝑡𝑎). 

By rearranging the equations, we get a cubic equation for 

the calculation of the selected side, which makes our task 

easier because we know the two sides and the median to 

one of them. 

Using the geometric method, we focus on determining 

the curve, which is characteristic of constructing the point 

of the triangle if we know one of its sides and the radius of 

the incircle. The curve is relatively easy to approximate, 

but it cannot be constructed in an Euclidean way, and so the 

solution is only approximate. On the other hand, we have 

compiled the relations arising from the calculation of the 

triangle when using the algebraic geometry method. By 

adjusting these relationships, we points out that the task 

aims at the construction of a cubic equation. Based on the 

cubic equation, we know that the task is not solvable with 

Euclidean means. As mentioned above, the rearrangement 

of algebraic formulas adds to the difficulty of the task using 

this method. The fact that the geometric method resulted in 

a pair of symmetric solutions to the axis of the side 𝑎 

corresponds to the solution using algebraic geometry 

where the similarity of expressions for the sides 𝑏, 𝑐 may 

result in a confusion, thereby leading us to a solution that is 

identical with the geometrical result. 

Task 3. Construct a triangle if |𝐵𝐶| = 𝑎, |𝐵𝑆𝑏| = 𝑡𝑏 is 

known, 𝑆𝑏 is the center of the side 𝐵𝐶, and 𝜌 is the radius 

of the incircle (𝑎, 𝑡𝑏 , 𝜌). 

Solution. We begin the task by the fact that we know the 

length of the side |𝐵𝐶| = 𝑎. Consequently, since we know 

the median on the opposite side, we know that the center of 

the side 𝑏  lies on the circle 𝑘𝑡𝑏(𝐵, 𝑡𝑏).  Then we can 

determine the properties of the point 𝐴  based on this 

median. We determine the curve with the point 𝐴 in a way 

that we freely choose the presumed center of the side 𝑏, so 

that 𝑆𝑏1 ∈ 𝑘𝑡𝑏 . . We determine the half-line 𝐶𝑆𝑏1  and 

circle 𝑘𝑏1(𝑆𝑏1, |𝐶𝑆𝑏1|) . Then, the sought curve is 

determined by the point 𝐴1𝑡𝑏 , 𝐴1𝑡𝑏 ∈ 𝐶𝑆𝑏1 ∩ 𝑘𝑏1.  The 

second curve that determines the point 𝐴  is obtained 

moving the incircle with center 𝑆1 on the straight line 𝑝 

parallel to the base, while we know that |𝑝, 𝐵𝐶| = 𝜌 . 

Furthermore, we know that the sides of the triangle belong 

to the circle 𝑘𝜌1(𝑆1, 𝜌)  with the touching straight lines 

𝑞, 𝑠. Then, it is true for the point 𝐴1𝜌 that 𝐴1𝜌, 𝐴1𝜌 ∈ 𝑞 ∩

𝑠, and when moving the circle 𝑘𝜌1, we get the curve that is 

characteristic of all the triangles, in which we know one 

side and the radius of the incircle. The sought point 𝐴 is an 

intersection of these curves (Figure 3). 
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Figure 3.  Construction of the triangle uses two curves whose intersections are the sought points. The first curve is determined by the side |𝐴𝐶| = 𝑎 

and the radius of the incircle.  The second curve is determined by the properties of the median tb and side |𝐵𝐶| = 𝑎. 

There are three intersections of the curves, and the 

intersection of the curves in the lower half-plane has no 

geometric significance for the task solved. The other two 

intersections of curves offer a pair of different solutions. 

Using the point we found, we will complete the 

construction by knowing the side 𝑏, which simplifies the 

task into one with the known angle 𝛼, side |𝐵𝐶| = 𝑎 and 

median on the side 𝑏 (𝑡𝑏). 

When using algebraic geometry, we make use of the fact 

that the median divides the triangle into two triangles with 

the same area, with each triangle having half the area of the 

original one. We can then use the equality of area of the 

resulting triangles using Heron's formula, and the 

relationship for the calculation of the area of a triangle 

(knowing the circumference and radius of the incircle): 

𝑆 = √(2𝑎 + 𝑏 + 2𝑡𝑎)(2𝑡𝑎 + 𝑏)(2𝑎 + 2𝑡𝑎 − 𝑏)(2𝑎 + 𝑏), 

𝑆 = √(2𝑐 + 𝑏 + 2𝑡𝑏)(𝑐 + 2𝑡𝑏)(2𝑎 − 𝑐 + 2𝑡𝑏)(2𝑎 + 𝑐), 

2𝑆 = 𝜌(𝑎 + 𝑏 + 𝑐). 

Thence we get: 

𝜌2(𝑎 + 𝑏 + 𝑐)2 = 2(2𝑎 + 𝑏 + 2𝑡𝑎)(2𝑡𝑎 + 𝑏)(2𝑎 +
2𝑡𝑎 − 𝑏)(2𝑎 + 𝑏), 

𝜌2(𝑎 + 𝑏 + 𝑐)2 = (2𝑐 + 𝑏 + 2𝑡𝑏)(𝑐 + 2𝑡𝑏)(2𝑎 − 𝑐 +
2𝑡𝑏)(2𝑎 + 𝑐). 

The first equation helps us express the relationship for 

the side 𝑐 and where it is in the square. The expression for 

the side 𝑐 can then be used in the second equation in order 

to determine the side 𝑏. With these rearrangements, we 

can make an equation of the sixth degree. Using the point 

we found, we will complete the construction by knowing 

the length of the side 𝑏, which simplifies the task into one 

with the known angle 𝛼, side |𝐴𝐶| = 𝑏 and median 𝑡𝑏 on 

the side 𝑏. 

The solution shows us that when using the methods of 

algebraic geometry, we have to identify a pair of curves 

which are characteristic of the features of the sought point. 

The first curve is determined by the characteristics 

resulting from the median, and the second curve is 

determined by the properties of the incircle in the triangle. 

For comparison, the solution implementing the methods of 

algebraic geometry highlights the problems that occur 

when rearranging algebraic expressions. The subsequent 

solution of the sixth degree equation is not solvable 

algorithmically, which means that the actual algebraic 

solution requires the knowledge of numerical 

approximation methods [10]. 

Task 4. Construct a triangle if |∡𝐵𝐴𝐶| = 𝛼, |𝐵𝑆𝑏| = 𝑡𝑏 is 

known, 𝑆𝑏 is the center of the side 𝐴𝐶, and 𝜌 is the radius 

of the incircle (𝛼, 𝑡𝑏 , 𝜌). 

Solution. The angle 𝛼 is defined by the point 𝐴  and 

arms defined by the half-line. The incircle 𝑘𝜌(𝑆, 𝜌)  is 

inscribed into this angle. Let us select a point 𝑆𝑏1 on the 

half-line 𝑝 . From the point 𝑆𝑏1,  we select the circle 

𝑘1𝑡𝑏(𝑆𝑏1, 𝑡𝑏).  Then we get the point 𝐵1, 𝐵1 ∈ 𝑞 ∩ 𝑘1𝑡𝑏 . 

Then, we draw a touch straight line 𝑎1 from the point 𝐵1 

to the circle 𝑘𝜌. Further, from the point 𝑆𝑏1 we select the 

circle 𝑘1𝑏/2(𝑆𝑏1, |𝐴𝑆𝑏1|)  and determine the point 

𝐶1𝐴, 𝐶1𝐴 ∈ 𝑝 ∩ 𝑘1𝑏/2 . Next, we determine the circle 

𝑘1𝑎(𝐵1, |𝐵1𝐶1𝐴|)  by which we determine the point 

𝐶1𝐵, 𝐶1𝐵 ∈ 𝑘1𝑎 ∩ 𝑎1.  The point 𝐶1𝐵  defines the curve, 

which is characteristic of the point 𝐶 under the defined 

conditions, and it does not lock the point on the angle arm 

𝛼 , i.e. the half-line 𝑝 . The sought point 𝐶  can be 

determined as an intersection of the curve with the arm of 
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angle 𝛼 (half-line 𝑝) and the curve under consideration 

(Figure 4). 

 

Figure 4.  To solve the task, we use a curve, which is determined by the 

properties of the incircle inscribed into the triangle and the median tb. 

Subsequently, the intersection of this curve with the angle arm determines 

the sought point of the triangle 

Before we begin to solve the task by algebraic geometry, 

we must realize that the median divides the triangle into 

two triangles with the same area. Therefore, we will be 

looking for the relations associated with triangle area. We 

will use the Heron's formula for the triangles created by 

median division. Next, we use the calculation of the 

triangle area using the angle of the sides, and the formula 

for the calculation of the triangle area knowing the radius 

of the incircle and the perimeter of the triangle: 

4𝑆 = √(2𝑎 + 2𝑡𝑏 + 𝑏)(2𝑡𝑏 + 𝑏)(2𝑎 + 𝑏)(2𝑎 + 2𝑡𝑏), 

4𝑆 = √(2𝑎 + 2𝑡𝑏 + 𝑐)(2𝑡𝑏 + 𝑐)(2𝑎 + 𝑐)(2𝑎 + 2𝑡𝑏), 

2𝑆 = 𝑏 ∙ 𝑐 ∙ sin 𝛼, 2𝑆 = (𝑎 + 𝑏 + 𝑐)𝜌. 

By comparing 2𝑆 = 2𝑆  we get the expression for 

𝑏 =
(𝑎+𝑐)𝜌

𝑐∙sin 𝛼−𝜌
, which we put into a rearranged equation 

4𝑆 = 4𝑆, i.e. the relation (2𝑎 + 2𝑡𝑏 + 𝑏)(2𝑡𝑏 + 𝑏)(2𝑎 +
𝑏) = (2𝑎 + 2𝑡𝑏 + 𝑐)(2𝑡𝑏 + 𝑐)(2𝑎 + 𝑐). Then 

(2𝑎 + 2𝑡𝑏 + 𝑐)(2𝑡𝑏 + 𝑐)(2𝑎 + 𝑐) = (2𝑎 + 2𝑡𝑏 +
(𝑎+𝑐)𝜌

𝑐.sin 𝛼−𝜌
) (2𝑡𝑏 +

(𝑎+𝑐)𝜌

𝑐.sin 𝛼−𝜌
) ∙ (2𝑎 +

(𝑎+𝑐)𝜌

𝑐.sin 𝛼−𝜌
). 

Then we can express the side 𝑎 as a solution of the 

quadratic equation. Then we determine the side 𝑐  by 

substituting the continuously expressed expressions into 

the equation 

4(𝑎 + 𝑏 + 𝑐)2𝜌2 = (2𝑎 + 2𝑡𝑏 + 𝑏)(2𝑡𝑏 + 𝑏)(2𝑎 +
𝑏)(2𝑎 + 2𝑡𝑏). 

By gradually resolving this system, we can change the 

task into a triangle construction task if we know all three 

sides. 

It follows from the comparison of methods that in both 

cases it is necessary to resort to approximative methods. In 

the case of the geometric method, we approximate the 

curve determined by the properties of the points which 

belong to it. In the case of the algebraic geometry method, 

we follow from three relations for the triangle area, which 

we use to determine a series of four nonlinear equations 

with four unknowns. When using the algebraic geometry 

method, we are facing a difficulty in rearranging the 

algebraic expressions such as the multiplication of 

polynomials, which complicates the calculation. 

Additionally, the solution of the system of nonlinear 

equations has no algorithmic solution, and the most 

appropriate method is the gradual substitution. This means 

that we gradually express the unknowns from the various 

equations, to finally get one equation of the fourth degree. 

Task 5. Construct a triangle if |∡𝐵𝐴𝐶| = 𝛽, |𝐵𝑆𝑏| = 𝑡𝑏 is 

known, 𝑆𝑏  is the center of the side 𝐴𝐶,  and 𝑜  is the 

perimeter of the triangle (𝛽, 𝑡𝑏 , 𝑜). 

Solution. We know the angle 𝛽, which is defined by the 

point 𝐵, and the arms defined by the half-lines 𝑝, 𝑞. On the 

half-line 𝑝 we determine a line segment |𝐵𝐴1| = 𝑜 and 

circle 𝑘𝑡𝑏(𝐵, 𝑡𝑏), on which lies the center of the side 𝑏. 

We select the point 𝐶1, 𝐶1 ∈ 𝐵𝐴1 and then determine the 

circle 𝑘1𝑏(𝐶1, |𝐶1𝐴1|). Then 𝐴1𝑖(𝑗), 𝐴1𝑖(𝑗) ∈ 𝑞 ∩ 𝑘1𝑏, and 

we get two points. Subsequently 𝑆1𝑏𝑖(𝑗) ∈ 𝐶1𝐴1𝑖(𝑗)  and 

|𝐶1𝑆1𝑏𝑖(𝑗)| = |𝑆1𝑏𝑖(𝑗)𝐴1𝑖(𝑗)|. The point 𝑆1𝑏𝑖(𝑗)  determines 

the curve on which lies the point 𝑆𝑏 as the center of side 𝑏, 

and the intersection of this curve with the circle 𝑘𝑡𝑏 

determines the center of the side 𝑏. 

 

Figure 5.  Based on the process and desired properties of the curve, we 
get two curves. For this reason, we used indexing in the construction 

characteristic of a curve in order to distinguish between them. 

Subsequently, the intersection of the envisaged curves with the arm angle 

determines the sought point 𝐴 

Next, we determine the curve that determines the point 

𝐶  based on the characteristics determined by the 

circumference of angle 𝛼 and using the median 𝑡𝑏 . We 

use the selected point 𝐶1, 𝐶1 ∈ 𝐵𝐴1  and determine the 

circle 𝑘1𝑏(𝐶1, |𝐶1𝐴1|). Then 𝐴1𝑖(𝑗), 𝐴1𝑖(𝑗) ∈ 𝑞 ∩ 𝑘1𝑏 , and 

we get two points. We select a half-line 𝐶1𝐴1𝑖(𝑗)  and 
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𝑆2𝑏𝑖(𝑗) ∈ 𝐶1𝐴1𝑖(𝑗) ∩ 𝑘𝑡𝑏 .  Then we determine the circle 

𝑘1𝑏𝑆(𝑆2𝑏𝑖(𝑗), |𝑆2𝑏𝑖(𝑗)𝐶1𝑆1𝑏𝑖(𝑗)|). The curve determining the 

sought point 𝐴 is established by means of the point 𝐴1𝑏𝑖(𝑗), 

which emerges as an intersection of the half-line 𝐶1𝐴1𝑖(𝑗) 

and circle 𝑘1𝑏𝑆 . Then, the intersection of the curve 

determined by the point 𝐴1𝑏𝑖(𝑗) and the arm 𝑞 determines 

the sought point 𝐴 (Figure 5). Based on the points 𝐴, 𝑆𝑏 

we can clearly identify the point 𝐶 and get all the points of 

the triangle 𝐴𝐵𝐶. 

Before we begin to solve the task by means of algebra, 

we must realize that the median divides the triangle into 

two triangles with the same area. Therefore, we will be 

looking for the relations associated with triangle area. We 

will use the Heron's formula for the triangles created by 

median division. Next, we use the calculation of the 

triangle area using the angle between the sides. Another 

formula we use is the formula for the calculation of triangle 

angle using the lengths of the sides and their angle: 

4𝑆 = √(2𝑎 + 𝑏 + 2𝑡𝑏)(𝑏 + 2𝑡𝑏)(2𝑎 + 2𝑡𝑏)(2𝑎 + 𝑏), 

4𝑆 = √(2𝑐 + 𝑏 + 2𝑡𝑏)(𝑏 + 2𝑡𝑏)(2𝑐 + 2𝑡𝑏)(2𝑐 + 𝑏), 

2𝑆 = 𝑏. 𝑐. sin 𝛼, 𝑜 = 𝑎 + 𝑏 + 𝑐. 

After rearrangement, substitution and comparison, we 

get a system of two nonlinear equations with two 

unknowns, which lead to an equation of the fourth degree: 

(𝑎 + 𝑜 + 𝑐 + 2𝑡𝑏)(2𝑎 + 2𝑡𝑏)(𝑎 + 𝑜 − 𝑐) =
(𝑐 + 𝑜 − 𝑎 + 2𝑡𝑏)(2𝑐 + 2𝑡𝑏)(𝑐 + 𝑜 − 𝑎), 

8(𝑎 + 𝑜 − 𝑐 + 2𝑡𝑏)(𝑜 − 𝑎 − 𝑐 + 2𝑡𝑏)(2𝑎 + 2𝑡𝑏)(𝑎 +
𝑜 − 𝑐) = (𝑜 − 𝑎 − 𝑐)2𝑐2 sin2 𝛼. 

The task solved with the geometric method is focusing 

on the properties resulting from the median. Thus, we 

determined the properties of the curves, which we used to 

determine the center of the side 𝑏 and the sought point 𝐴. 

On the other hand, we used the solution with the method of 

algebraic geometry where we have put together a system of 

equations that help us determine the unknown sides, which 

changes the task into a triangle construction task knowing 

all three sides. 

Task 6. Construct a triangle if |𝐴𝑆𝑎| = 𝑡𝑎 is the height to 

the side 𝑎, |𝐴𝑆𝑎| = 𝑡𝑎, where 𝑆𝑎 is the center of the side 

𝐴𝐶, and 𝑜 is the perimeter of the triangle (𝑣𝑎, 𝑡𝑎, 𝑜). 

Solution. Let us select the line segment |𝐵𝐴1| = 𝑜 on 

the line 𝑝. The height is represented by the parallel line 

𝑞 , |𝑝 𝑞| = 𝑣𝑎 .  Let us select the point 𝐶1, 𝐶1 ∈ 𝐵𝐴1  and 

point 𝑆𝑎1 where |𝐵 𝑆𝑎1| = |𝑆𝑎1𝐶1|. Let us select the circle 

𝑘𝑡𝑎(𝑆𝑎1, 𝑡𝑏) and circle 𝑘𝑏1(𝐶1, |𝐶1𝐴1|). We get the point 

𝐴1𝑘, 𝐴1𝑘 ∈ 𝑘𝑡𝑎 ∩ 𝑘𝑏1, which is characteristic of the curve 

determined for the triangle with a known circumference 

and median. Then, we get the sought point 𝐴  as an 

intersection of the curve determined by the properties of 

the point 𝐴1𝑘 and line 𝑞. Subsequently, we can determine 

the side |𝐴𝐵| = 𝑐, which provides us with a new parameter 

and simplifies the task (Figure 6). 

 

Figure 6.  The curve designated by the properties resulting from the 

perimeter of the triangle and median 𝑡𝑎 is determined by the point 𝐴1𝑘. 

Its intersection with the line 𝑞 is the sought point 𝐴, which can be used to 

complete the construction of the sought triangle 

When solving the task with algebraic geometry, it is 

necessary to realize the fundamental relations that can be 

used to build the equation. The median divides the triangle 

into two triangles with the same area. Based on this fact, we 

can put together an equation for the triangle area based on 

the height, and use Heron's formula: 

2𝑆 =

√(𝑎 + 2𝑡𝑎 + 2𝑏)(2𝑡𝑎 + 𝑏 − 𝑎)(𝑎 + 2𝑡𝑎 − 𝑏)(𝑎 − 𝑡𝑎 + 𝑏), 

2𝑆 = √(𝑎 + 2𝑡𝑎 + 2𝑐)(2𝑡𝑎 + 𝑐 − 𝑎)(𝑎 + 2𝑡𝑎 − 𝑐)(𝑎 − 𝑡𝑎 + 𝑐), 

2𝑆 = 𝑎. 𝑣𝑎, 𝑜 = 𝑎 + 𝑏 + 𝑐. 

We express 𝑎 = 𝑜 − 𝑏 − 𝑐, and substitute this relation 

into the remaining equations: 

(𝑜 − 𝑐 + 2𝑡𝑎 + 𝑏)(2𝑡𝑎 + 2𝑏 − 𝑜 + 𝑐)(𝑜 − 𝑐 + 2𝑡𝑎)(𝑜 − 𝑐 −
𝑡𝑎) = (𝑜 − 𝑏 − 𝑐). 𝑣𝑎, 

(𝑜 − 𝑐 + 2𝑡𝑎 + 𝑏)(2𝑡𝑎 + 2𝑏 − 𝑜 + 𝑐)(𝑜 − 𝑐 + 2𝑡𝑎)(𝑜 − 𝑐 −
𝑡𝑎) = (𝑜 − 𝑏 + 2𝑡𝑎 + 𝑐)(2𝑡𝑎 + 2𝑐 − 𝑜 + 𝑏)(𝑜 − 𝑏 + 2𝑡𝑎)(𝑜 −

𝑏 − 𝑡𝑎). 

By rearranging the equations, we can put together the 

cubic equations to determine the sides. The rearrangement 

of algebraic expressions, i.e. Multiplication of a few 

brackets that contain several members, is quite demanding, 

albeit algorithmic matter. Subsequently, once the algebraic 

equation of a higher degree is ready, it needs to be solved 

with the method of approximate calculations. 

The solution of this tasks requires us to use the methods 

of approximate constructions. When solving the task with 

geometric methods, we use the properties resulting from 

the provided parameters. In the case of side height, we take 

advantage of the parallel line whose distance from the base 

line is determined by the side height. Another curve is the 

one determined by the circumference of the triangle and 

median of the side. We make use of the fact that the median 

is determined by the extreme and center of the opposite 

side. Subsequently, we determine the freely moving point 

𝐶1, which we used to determine the sought curve, and that 

makes the point 𝐴 easy to determine and effectively make 

the task easier because we know the side |𝐴𝐵| = 𝑐. On the 

other hand, we have pointed to the solution with algebraic 

geometry, and using the relations for triangle area we put 

together a system of nonlinear equations for determining 

the unknown sides. Using the substitution method, we 
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pointed out that the task aims at the construction of a cubic 

equation. The equation degree points to Euclidean 

solvability (and/or insolvability) of the task. 

Task 7. Construct a triangle if 𝑣𝑎 is the height to the side 

𝑎, |𝐵𝑆𝑏| = 𝑡𝑏, where 𝑆𝑏 is the center of the side 𝐴𝐶, and 

𝑜 is the perimeter of the triangle (𝑣𝑎 , 𝑡𝑏 , 𝑜) 

Solution. Let us select the line segment |𝐵𝐴1| = 𝑜 on 

the line 𝑝. The height is represented by the parallel line 

𝑞, |𝑝𝑞| = 𝑣𝑎 . Then we determine the circle 𝑘𝑡𝑏(𝐵, 𝑡𝑏) 

with center of the side 𝑏. We select the point 𝐶1, 𝐶1 ∈ 𝐵𝐴1 

and then determine the circle 𝑘1𝑏(𝐶1, |𝐶1𝐴1|).  Then 

𝐴1𝑖(𝑗), 𝐴1𝑖(𝑗) ∈ 𝑞 ∩ 𝑘1𝑏, and we get two points. Subsequently 

𝑆1𝑏𝑖(𝑗) ∈ 𝐶1𝐴1𝑖(𝑗)  and |𝐶1𝑆1𝑏𝑖(𝑗)| = |𝑆1𝑏𝑖(𝑗)𝐴1𝑖(𝑗)|.  The point 

𝑆1𝑏𝑖(𝑗) determines the curve on which lies the point 𝑆𝑏 as 

the center of side 𝑏, and the intersection of this curve with 

the circle 𝑘𝑡𝑏 determines the center of the side 𝑏.  Next, 

we determine the curve that meets certain properties of the 

point 𝐴  based on the characteristics determined by the 

circumference of angle 𝛼  and median 𝑡𝑏 .  We use the 

selected point 𝐶1, 𝐶1 ∈ 𝐵𝐴1 and then determine the circle 

𝑘1𝑏(𝐶1, |𝐶1𝐴1|). Then 𝐴1𝑖(𝑗), 𝐴1𝑖(𝑗) ∈ 𝑞 ∩ 𝑘1𝑏, and we get 

two points. We select the half-line 𝐶1𝐴1𝑖(𝑗) followed by 

point 𝑆2𝑏𝑖(𝑗) ∈ 𝐶1𝐴1𝑖(𝑗) ∩ 𝑘𝑡𝑏  and determine the circle 

𝑘1𝑏𝑆(𝑆2𝑏𝑖(𝑗), |𝑆2𝑏𝑖(𝑗)𝐶1𝑆1𝑏𝑖(𝑗)|). The curve with the sought 

point 𝐴 is established by means of the point 𝐴1𝑏𝑖(𝑗), which 

emerges as an intersection of the half-line 𝐶1𝐴1𝑖(𝑗)  and 

circle 𝑘1𝑏𝑆 . Then, the intersection of the curve is 

determined by the point 𝐴1𝑏𝑖(𝑗) and the arm 𝑞 determines 

the sought point 𝐴 (Figure 7). On the basis of the point 𝐴 

and point 𝑆𝑏 we can clearly identify the point 𝐶. 

 

Figure 7.  The picture shows a construction with two curves. The first 

curve is used to determine the center of the 𝐶𝐴 side. The second curve is 

used to determine the point 𝐴. Subsequently, if we know the triangle 

extreme and the center of the side, it is possible to finalize the construction 

When solving the task with algebraic geometry, it is 

necessary to realize the fundamental relations that can be 

used to build the equation. The median divides the triangle 

into two triangles with the same area. Based on this fact, we 

can put together an equation for the triangle area based on 

the height, and use Heron's formula: 

2𝑆 =

√(2𝑎 + 2𝑡𝑏 + 𝑏)(2𝑡𝑏 + 𝑏 − 2𝑎)(2𝑎 − 2𝑡𝑏 + 𝑏)(2𝑎 + 2𝑡𝑏 − 𝑏), 

2𝑆 =

√(2𝑐 + 2𝑡𝑏 + 𝑏)(2𝑡𝑏 + 𝑏 − 2𝑐)(2𝑐 − 2𝑡𝑏 + 𝑏)(2𝑐 + 2𝑡𝑏 − 𝑏), 

2𝑆 = 𝑎. 𝑣𝑎, 𝑜 = 𝑎 + 𝑏 + 𝑐. 

We express 𝑏 = 𝑜 − 𝑎 − 𝑐, and use this relation in the 

remaining equations: 

(𝑎 + 2𝑡𝑏 + 𝑜 − 𝑐)(2𝑡𝑏 + 𝑜 − 𝑐 − 3𝑎)(𝑎 − 2𝑡𝑏 + 𝑜 −
𝑐)(3𝑎 + 2𝑡𝑏 − 𝑜 + 𝑐) = 𝑎. 𝑣𝑎, 

(𝑎 + 2𝑡𝑏 + 𝑜 − 𝑐)(2𝑡𝑏 + 𝑜 − 𝑐 − 3𝑎)(𝑎 − 2𝑡𝑏 + 𝑜 −
𝑐)(3𝑎 + 2𝑡𝑏 − 𝑜 + 𝑐) = (𝑐 + 2𝑡𝑏 + 𝑜 − 𝑎)(2𝑡𝑏 + 𝑜 −

𝑎 − 3𝑐)(𝑐 − 2𝑡𝑏 + 𝑜 − 𝑎)(3𝑐 + 2𝑡𝑏 − 𝑜 + 𝑎). 

By rearranging the equations, we can put together the 

cubic equations to determine the sides. Subsequently, once 

the algebraic equation of a higher degree is ready, it needs 

to be solved with the method of approximate calculations. 

This task is very similar to task (𝛼, 𝑡𝑏 , 𝑜), (𝑣𝑎 , 𝑡𝑎, 𝑜). 
When using the geometrical method, the task is very 

similar to (𝛼, 𝑡𝑏 , 𝑜) , which was directly used in the 

solution. On the other hand, when using algebraic 

geometry, the task was similar to the task(𝑣𝑎 , 𝑡𝑎, 𝑜), which 

facilitates the construction of the system of equations to 

solve the task. 

Task 8. Construct a triangle if 𝑣𝑎 is the height to the side 

𝑎, |𝐵𝑆𝑏| = 𝑡𝑏, where 𝑆𝑏 is the center of the side 𝐴𝐶, and 

𝑟 is the radius of the circumcircle (𝑣𝑎, 𝑡𝑏 , 𝑟) 

Solution. We start out by knowing that the point 𝐵 is 

located on the line 𝑝. The height is represented by the 

parallel line 𝑞, |𝑝 𝑞| = 𝑣𝑎 . Then we determine the circle 

𝑘𝑡𝑏(𝐵, 𝑡𝑏) with center of the side 𝑏. Next, we determine 

the circle 𝑘(𝐴, 𝑟)  and select the point 𝑆1  on it as the 

center of the circumcircle. Then we select the circle 

𝑘𝑟1(𝑆1, 𝑟)  and get the points 𝐶1, 𝐶1 ∈ 𝑝 ∩ 𝑘𝑟1 , 𝐴1, 𝐴1 ∈
𝑞 ∩ 𝑘𝑟1 and points 𝑆1𝑖𝑡𝑏  and 𝑆1𝑗𝑡𝑏  as the intersections of 

the circle 𝑘𝑟1  with the line  𝑛 , 𝐶1𝐴1 ∈ 𝑛.  Then we 

determine the circle 𝑘𝑏𝑖(𝑗)1(𝑆1𝑖(𝑗)𝑡𝑏 , |𝑆1𝑖𝑡𝑏 𝐶1|). The point 

𝐴1𝑖(𝑗)𝑏 ,  which it is characteristic of the curve that is 

characterized by the parameters 𝑡𝑏 , 𝑟,, is determined as an 

intersection of the line 𝑛  and circle 𝑘𝑏𝑖(𝑗)1  (Figure 8). 

Then, the intersection of the curve determined like this and 

the line 𝑞 defines the sought point 𝐴, which substantially 

simplifies the task because we already know to find the 

center of the circumcircle, and thus unequivocally identify 

the sought triangle. 
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Figure 8.  To construct the triangle, we use the fact that the sought point can be found as the intersection of the curve determined by the point 𝐴1𝑖(𝑗)𝑏 , 

which we determined thanks to the median and the properties of the circumcircle. Then, by determining the point 𝐴 we get the side

To solve the task with the method of algebraic geometry, 

we use the expressions for the calculation of triangle area. 

The median divides the triangle into two triangles with half 

the area. Furthermore, to calculate the triangle area, we will 

use the height to the side, and the calculation of the triangle 

area can also be achieved by two sides and their angle. The 

angle can be linked with the radius of the incircle by means 

of the sine theorem. Based on these data, we can determine 

the system of equations from which we subsequently 

determine the length of the sought sides: 

2𝑆 =

√(𝑏 + 2𝑡𝑏 + 2𝑎)(2𝑡𝑏 + 2𝑎 − 𝑏)(𝑏 − 2𝑡𝑏 + 2𝑎)(𝑏 + 2𝑡𝑏 − 2𝑎), 

2𝑆 =

√(𝑏 + 2𝑡𝑏 + 2𝑐)(2𝑡𝑏 + 2𝑐 − 𝑏)(𝑏 − 2𝑡𝑏 + 2𝑐)(𝑏 + 2𝑡𝑏 − 2𝑐), 

2𝑆 = 𝑎 ∙ 𝑣𝑎, 4𝑆 =
𝑎.𝑏.𝑐

𝑟
. 

We compare the last two relations and express 𝑏 =
2𝑟

𝑐∙𝑣𝑎
. 

Then, by comparing the first two relations and substituting 

𝑏, we get: 

(
2𝑟

𝑐.𝑣𝑎
+ 2𝑡𝑏 + 2𝑎) (2𝑡𝑏 + 2𝑎 −

2𝑟

𝑐.𝑣𝑎
) (

2𝑟

𝑐.𝑣𝑎
− 2𝑡𝑏 +

2𝑎) (
2𝑟

𝑐.𝑣𝑎
+ 2𝑡𝑏 − 2𝑎) = (

2𝑟

𝑐.𝑣𝑎
+ 2𝑡𝑏 + 2𝑐) (2𝑡𝑏 + 2𝑐 −

2𝑟

𝑐.𝑣𝑎
) (

2𝑟

𝑐.𝑣𝑎
− 2𝑡𝑏 + 2𝑐) (𝑏 + 2𝑡𝑏 − 2𝑐) = 𝑎2. 𝑣𝑎

2. 

By gradual multiplication, we would get an equation of 

the fourth degree for the sides 𝑎, or possibly 𝑐. 

The task of constructing a triangle with the known 

parameters (𝑣𝑎, 𝑡𝑏 , 𝑟)  is similar to task (𝑣𝑎 , 𝑡𝑏 , 𝑜)  and 

(𝑎, 𝛼, 𝑟) at first glance. Similarity has been used even in 

the geometric method, in which we use the movement of 

the center of the circumcircle, but also in the algebraic 

geometry method, in which we use the relations to 

determine the triangle area. In the algebraic geometry 

method, we subsequently compile a set of equations that 

lead to an equation of the fourth degree. In the task with 

specific numerical figures, the resulting compiles equation 

could be solved e.g. with Euler's method even if the 

solution is not constructible in an euclidean way. 

4. Conclusions 

Since its beginnings geometry has been linked with real 

life, and many historical tasks required a solution, albeit 

not perfectly accurate. This inter alia promptes the 

development of approximate calculations and methods of 

approximate structures. This paper is focused on the 

approximate solutions to geometric problems related to the 

construction of triangles, which result in the construction 

of cubic and biquadratic equations when the algebraic 

geometry methods are used. The algebraic geometry 

method is very important and it results in the solution of 

algebraic equations. The solution of algebraic equations is 

closely related to algebraic structures, which resulted in the 

theory of solvable Euclidean tasks in geometry. Several of 

the above tasks are aimed at the construction of a triangle 

with the geometric and algebraic method. In addition, we 

highlight other important sets of points and characteristics 

that result from the data for the triangle. We point out the 

possibility of constructing them as geometric curves, while 

focusing on the point structure of the curve. We focuse 

mainly on some non-traditional tasks in construction 

geometry, and the solution resultes in the emergence of 

parametric curves that are used in computational solutions 

irrespective of the software used. The above tasks point to 

the different methods of construction and lead to the 

development of knowledge and skills in other parts of 

mathematics. Given the fact that these tasks are 

complicated from the computational point of view, our 

current limitation is that the computing software keeps 

failing in some calculations. Although it is possible to 

create the intended curve, it is sometimes impossible to 

clearly determine the intersection of the curve with another 

geometric object. Therefore, in addition to using the 

geometric and algebraic approach to solving some specific 

tasks in the construction of triangles, it is also necessary to 

deal with the very complexity of algorithms for 

computational solutions to geometric problems [11]. 
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