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Abstract  The article discusses the solution of applied 
problems, for which the dynamic programming method 
developed by R. Bellman in the middle of the last century 
was previously proposed. Currently, dynamic 
programming algorithms are successfully used to solve 
applied problems, but with an increase in the dimension of 
the task, the reduction of the counting time remains 
relevant. This is especially important when designing 
systems in which dynamic programming is embedded in a 
computational cycle that is repeated many times. 
Therefore, the article analyzes various possibilities of 
increasing the speed of the dynamic programming 
algorithm. For some problems, using the Bellman 
optimality principle, recurrence formulas were obtained 
for calculating the optimal trajectory without any analysis 
of the set of options for its construction step by step. It is 
shown that many applied problems when using dynamic 
programming, in addition to rejecting unpromising paths 
lead to a specific state, also allow rejecting hopeless states. 
The article proposes a new algorithm for implementing 
the R. Bellman principle for solving such problems and 
establishes the conditions for its applicability. The results 
of solving two-parameter problems of various dimensions 
presented in the article showed that the exclusion of 
hopeless states can reduce the counting  time by 10 or 
more times. 
Keywords  Dynamic Programming, System State, 
Optimal Trajectory (path), Optimality Principle, Pareto 
Sets 

1. Introduction
The main provisions of dynamic programming were 

formulated when considering a dynamic system, whose 
state is determined by one or more parameters. At fixed 
times the system is affected by external impacts (controls), 

which convert it from one state to another. It is required to 
find a sequence of impacts that transfers the system from a 
given initial state to a final state with minimal total cost. 
The sequence of actions determines the sequence of states, 
i.e. the trajectory (path) of the system. 

R. Bellman [1,2,3,4] formulated the principle of 
optimality, the meaning of which is to go along the 
optimal trajectory from any state to the final state if the 
“past history” does not matter. The applicability 
conditions of dynamic programming are as follows: 
1. The objective function (costs) can be calculated in

stages, which are determined by the given moments 
of the impact. 

2. The set of possible paths from each state does not
depend on how the system got into this state. 

3. The result of the impact on the system (step
transition) in each of the states does not depend on 
how the system got into this state. 

Back in the early 60s of the last century, R. Bellman 
and his colleagues realized their method in solving a 
number of practically important problems [1,2]. 

The method can be applied to the development of 
optimal solutions in multi-stage processes, including those 
cases when the division into stages is done artificially 
[2,3,4,5]. Currently, dynamic programming algorithms are 
successfully used to solve applied problems from various 
fields of practice [6]. 

One of the latest proposals is the approximation of 
plane curves by splines of complex structure [7]. 

In the original algorithm, it was proposed to carry out 
calculations from the final state to the initial one 
(backward-sweep method [1,2,4]). For this, all possible 
states of the system must be known. For this reason, it was 
recommended [1,3,4,8] to solve many applied problems 
using a regular grid of states. 

In accordance with the principle of optimality, from 
each state to the final state it is necessary to go along the 
optimal path. But under the same conditions, each state 
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from the initial state should be reached along the optimal 
path. In other words, of all the paths leading to a certain 
state, we need to keep only the best one. 

It corresponds to a direct - sweep method [3,4]. In this 
case, the set of possible states of the system can be 
constructed in stages and using of a regular grid of states 
is not necessary. 

It should be noted that with an increase in the number 
of states at each stage and the number of stages, the 
number of analyzed (and memorized) transitions increases 
sharply, which can lead to unacceptable costs of computer 
time, even when using modern public computers. 
Therefore, the development of high-speed dynamic 
programming algorithms continues to be relevant, 
especially for the tasks in which the state is described by 
more than one parameter. This is especially important 
when developing systems in which dynamic programming 
is embedded in a repeatedly repeated calculation cycle. 

Improving the performance of dynamic programming 
algorithms is achieved when rejecting not only hopeless 
paths leading to a specific state, but when rejecting 
hopeless states and all their incoming and outgoing paths. 

2. Objectives 
The main goals of this article are to show how the idea 

of rejecting hopeless states is realized in solving many 
applied problems for which traditional dynamic 
programming algorithms were previously proposed, 
formulate additional conditions for the applicability of the 
algorithm with rejecting states, and present the results of 
comparative calculations which confirm the effectiveness 
of the new algorithm. In addition, the article aims at 
showing how, in some applied problems, dynamic 
programming allows one to obtain recurrence formulas for 
calculating the optimal trajectory without enumeration of 
options at all. 

3. Some Tasks that Allow the 
Calculation of the Optimal 
Trajectory without Enumerating 
Options 

Let us consider the task of planning supplies (purchases) 
of equipment for the development of production (trade, 
etc.) in several stages (for example, months or quarters) 
for a given time. Let T be the number of stages, ci - the 
cost of supplying a unit of equipment (price) at the i-th 
stage, xi- the number of units of equipment delivered (i = 
1,2, ..., T-1), ri and si, the number of units used and 
equipment already supplied at the i-th stage respectively, 
(si ≥ri and ri + 1≥ ri for all i). hi- the cost of storing a unit 
of  unused equipment. It is required to find the sequence 
xi≥0(i = 1,2, ..., T-1) for which the total costs for all 

stages are minimal. It should be noted that the operating 
costs of the equipment are not taken into account, since 
the number of used units of equipment ri is given and does 
not depend on xi (i = 1,2, ..., T-1). At the last stage rТ units 
of equipment are operated and there are no supplies. 

Deliveries and commissioning refer to the end of the 
stage, therefore si+1 = si + xi (i = 1,2, ..., T-1). We assume 
that s1 = r1. 

The simplest solution is to supply the minimum amount 
of equipment for each stage, that is, take xt +1 = rt +1-rt, but 
this maybe a bad solution if equipment is more expensive 
at last stage. Let zi denotes the costs at the i-th stage and 
Zi the total costs for the i stages. 

Z1=c1x1. 
Z2=z1+z2= c1x1+ c2x2+ h2(s2-r2)= 

= s2(c1 -c2+h2)- c1r1- h2r2+c2s3.        (1) 

Here we use x1= s2 -s1; x2= s3 -s2 and s1 =r1. 
Of all the paths leading to the given state s3, we must 

leave the one for which Z2 is maximum. This means that 
from all the possible states of the second stage s2, we need 
to take the one that, for a given s3, gives a maximum of  
Z2 = Z2*. But it can be seen from formula (1) that Z2 is a 
linear function of s2 for a fixed s3. Therefore, for       
d2 = c1-c2 + h2> 0, we take the minimum s2 = r2, and for  
d2 <0, we take the maximum s2 = s3, since x2≥= 0  

In the first case, from (1) we obtain 
Z2

*= c1(r2 – r1)- c2r2+ c2s3=p2+q2s3. Here q2= c2 and  
p2= c1(r2 – r1)- c2r2. In the second case,            
Z2

*=- c1r1-h2r2 +( c1+ h2) s3= p2+q2s3, but now       
P2=- c1r1-h2r2 and q2= c1+ h2. If c1 -c2+h2=0 the obtained 
pairs of p2 and q2 coincide. In this case, we can take any 
value of s2, satisfying the condition r2≤ s2 ≤s3. 

If we now take Zi=pi +qisi+1, then for Zi+1 we get   
Zi+1= pi +qisi+1 +ci+1(si+2- si+1)+hi+1(si+1- ri+1) = pi - hi+1 ri+1+ 
si+1(qi- ci+1+ hi+1)+ ci+1si+2 

For a fixed si+2 it is necessary to find si+1 at which the 
costs for Zi+1 stages are minimal. If di+1= qi- ci+1+ hi+1>0 
we take si+1= ri+1, otherwise si+1=si+2. In any case, 
Zi+1

*=pi+1 + qi+1si+2, but in the first case (di+1= qi- ci+1+ 
hi+1>0) we get pi+1= pi+ ri+1(qi- ci+1) and qi+1= ci+1, and in 
the second case pi+1= pi- hi+1ri+1 and qi+1= qi+ hi+1. 

It turns out that in any state of sk at any stage we need 
to go from the state of the previous stage with the lowest 
value (rk-1) or with a value equal sk. 

Denoting q1=c1 and p1= -c1r1, for i=1,2,…,T-2 we 
obtain the following algorithm: 
1. i=1; 
2. Calculate di+1= qi- ci+1+ hi+1 and remember it. 
3. If di+1≥0, calculate pi+1= pi+ ri+1(qi- ci+1) and qi+1= ci+1; 

otherwise pi+1= pi- hi+1ri+1 and qi+1= qi+ hi+1. 
Remember pi+1 and qi+1. 

4. If i<T-2 then increase i by 1 and go to step 2, 
otherwise calculate ZT-1= pT-1+ qT-1 rT. 

This is the minimum value of the objective function, 
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since at the stage with number T, the costs are equal to 
zero: there are no supplies and sT=rT, since sT<rT is 
unacceptable, and sT>rT means unnecessary costs for 
equipment which will not be used. 

We will restore the optimal trajectory, passing 
sequentially from the last stage to the second (Fig. 1). If 
dT-1>0, then go from rT to rT-1, otherwise save rT, etc. 

 

Figure 1.  Recovery of the optimal trajectory 

The problem under consideration can be solved using 
the traditional dynamic programming algorithm with a 
partition of a regular state grid, but the above algorithm is 
preferable. It allows, in addition to the initial data, to 
remember only the signs of all the calculated values of di 
and only the last calculated pair pi,qi. The amount of 
computation is also insignificant. 

If raw materials or, for example, building materials and 
not equipment that is not consumed are to be supplied, the 
algorithm is almost the same, but the calculation formulas 
are different. 

The needs for raw materials for work at each stage are 
denoted by ri, and the actual deliveries at each stage 
through (i=1,2,…T). 

We calculate the partial sums: R1=r1 and then     
Ri+1= Ri + ri+1 for all i=1,2,…,T-1. The state of the system 
at the i-th stage will be Si i.e. the total amount of raw 
materials delivered for all previous stages, including the 
current one. S1=s1; 
Si+1= Si + si+1; i=1,2,…,T-1. The conditions si ≥ri and 

ri+1≥ri are optional (except for s1 ≥r1). Instead, we have 

Si ≥ Ri (i=1,2,…,T-1) and ST = RT. 

The costs of delivery (сi) and storage (hi) of a unit of 
raw materials  at  the i-th stage are known. 

Costs for the first two stages Z2= c1S1 + h1(S1-R1) + 
c2(S2-S1) + h2(S2-R2) = (c1-c2+h1)S1 + (c2+h2)S2 - h1R1 - 
h2R2. 

It is required to find S1, which for a fixed S2 gives the 
minimum value of Z2

*. If d2= c1-c2+h1≥0 we take S1= R1, 
otherwise S1= S2. In any case, Z2

* is written in the form 
Z2

*=p2 +q2S2, but in the first case p2= R1(c1-c2)- h2R2 and 
q2= c2+h2, and in the second case p2=-h1R1-h2R2;     
q2= c1+h1+ h2. 

Further, if Zi= pi +qiSi, then 
Zi+1= pi- hi+1 Ri+1+ (qi- ci+1) Si+(c i+1+h i+1) Si+1. 
The choice of Si for fixed Si+1 is determined by the sign 

di+1= qi- ci+1. If di+1≥0 then Si=Ri, otherwise Si=Si+1. In 
any case, Zi+1

*= pi+1+ qi+1Si+1. But if di+1≥0 we get   
pi+1= pi+Ri(qi- ci+1)-hi+1Ri+1 and qi+1= ci+1+ hi+1, otherwise 
pi+1= pi -hi+1Ri+1; qi+1= qi+ hi+1. Setting p1=-h1R1 and     
q1 =с1+ h1, we can apply the above algorithm by 
sequentially calculating di+1 and pairs pi+1,qi+1 using the 
formulas obtained for i=1,2...,T-1. After calculating all Si 
we calculate si= Si+1- Si. (i=T-1,T-2, …,1). 

4. Dynamic Programming with the 
Rejection of Hopeless States 

We consider the integer linear programming problem, 
known as the knapsack problem [8,9]: 

Find max z=c1x1+c2x2+…+cnxn for 
a1x1+a2x2+…+anxn≤b, xj ∈ {0,1},aj>0; cj>0; j =1,…,n. 

We can assume that the problem is the optimal 
distribution of a given resource b among n consumers, the 
j-th consumer receives aj resource units or nothing. But 
we can talk about the problem of the optimal choice of n 
items with given costs cj for loading a vehicle with 
carrying capacity b [3]. When choosing the j-th item, a 
resource is spent on the amount of aj and the effect cj is 
achieved. We need to choose so as not to consume a 
resource greater than b and achieve the maximum total 
effect z. The solution to this problem is given in the 
literature as an example of using dynamic programming 
[3,8]. The problem considered in [3] is in loading a car 
with a carrying capacity of 35 units of weight with an 
optimal set of six items, the weights and costs of which 
are shown in table 1. 

Table 1.  Source data 

Item I1 I2 I3 I4 I5 I6 

Weight qi 4 7 11 12 16 20 

Cost сi 7 10 15 20 27 34 

It is required to choose such items, the total weight of 
which does not exceed 35, and the total cost is maximum. 

The problem is solved by the backward-sweep method 
using a state grid with discrete d = 1. At each of the six 
stages, 36 states are considered [3]. 

Note that if we build a trajectory from “start to end”, 
then after the first stage there are only 2, after the second 
4, etc., but not 36 states. Moreover if the weights of 
objects are non-integer (for example, 7.28; 11.65, etc.), 
then for the exact solution of the problem we will have to 
use d = 0.01, and the number of states (grid nodes) at each 
stage increases by two orders of magnitude with the same 
number of items, and dynamic programming becomes less 
efficient than method of full enumeration. 

But the state grid is not needed at all, since it is possible 
to consider the already used resource as the state of the 
system, build all realistically achievable states in stages, 
calculating the total cost of the items taken for each of 
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them, and if two (or more) paths fall into the same state 
leave the one to which the maximum cost corresponds. In 
the problem under consideration, such a state occurs after 
the third stage: 11 units of the resource are used. Two 
ways are brought into this state: (0,0,11) take only the 
third item and (4,7,0) take only the first two. On the first 
path, the total cost is 15, and on the second path 17 (see 
table 1 above). The first path and all its extensions are 
rejected. 

We will consider two states after the fourth stage: the 
path (4,0,0,12): only the first and fourth items were taken 
and the path (0,7,11,0): only the second and third items 
were taken. For the first of them, 16 units of weight were 
used and the total cost of 27 (7 + 0 + 0 + 20) was obtained. 
And for the second, 18 units of weight were used and the 
cost was 25 (0 + 10 + 15 + 0). The second state 18 (25) is 
unpromising and can be rejected, since it is easier to place 
the remaining items with a reserve of the load-carrying 
capacity resource, and the opportunities of choice on the 
next stages are the same. 

At the fifth stage, state 22 (32) is unpromising (since 
there is state 20 (34)), as well as states 27 (42), 30 (45), 
and 34 (52). In general, after the fifth stage, only 15 (and 
not 32 and not 36) states will remain. Therefore, the 
algorithm with rejection of states in this problem is more 
efficient than the traditional algorithm. The presence of 
non-integer item weights does not complicate the task 
when using it. 

In a more general case, there are several instances of 
each item, but the appearance of hopeless states is also 
possible. 

For example, there are many items, each having a 
duplicate. If the weight of the first three items is 4; 7 and 
12, and the cost is 8, 15 and 16, respectively, then at the 
third stage a hopeless state arises. Indeed, taking only the 
first and two second items, we get the total weight of    
4 +7 +7 = 18 and the cost of  8 + 15 + 15 = 38. 

And if we take only the first two and the third item, we 
get the weight 4 + 4 + 12 = 20 and the cost 8 + 8 + 16 = 
32, that is, the weight is more, and the cost is less. State 
20 (32) is unpromising, since at the same stage there is 
state 18 (38), and the possibilities and consequences of 
making decisions about all subsequent items are the same 
for them. With an increase in the number of instances of 
items, the number of hopeless states can increase 
significantly. 

5. The Algorithm 
Now we describe the dynamic programming algorithm 

with rejection of states and state the conditions for its 
applicability. 

So far we assume that the state is determined by one 
parameter P. We will consider a two-criterion problem: 
the first criterion is parameter P. The second parameter Q 
is the value of the objective function corresponding to the 

variant of the trajectory leading to the given state. In 
resource allocation problems P is the amount of resource 
used (a minimum is needed), and for Q-, a maximum is 
needed. In the task of loading vehicles, P is the total 
weight of the selected items, and Q is their total cost. 
1. States after the first stage (take a different number of 

copies of the first item), we order by one of the 
parameters, for example, by P, and calculate the Q 
value for each of them. 

2. We form successively the states of the next stage, 
obtained as extensions of the paths leading to the 
states of the last considered stage while maintaining 
order. Several continuations can proceed from each 
state. We believe that they are ordered by 
incrementing the parameter P. In the problem with 
several instances of each item, this corresponds to the 
choice of 1,2,3 ... etc. copies of the item that 
corresponds to the stage under consideration. The 
formation of the next stage begins with a transition 
from each state with a minimum increment of 
parameter P. 

As applied to the knapsack problem, the process is 
shown in Fig.2. 

 

Figure 2.  To the rejection of states in the knapsack problem 

If qi is the weight of the item i, then after the first step 
we have two states 0 and q1, after the second step we have 
the same two states (do not take the second item) and two 
more new ones (take the second item without the first - q2 
or with the first q1 + q2 ). After the third step, we have the 
same 4 states (did not take the third item) and 4 new ones, 
a total of 8 states, etc. 

For this task, the minimum increment P is zero (we 
don’t take the next item), and all the states of the last 
formed stage are simply rewritten into the list of states at a 
new stage. Further, we sequentially consider transitions 
with the following increments параметра Р. In the 
knapsack problem with each attempt to form a new state 
(point C in Fig. 2), the already formed states A and B 
(adjacent to it) were determined. They correspond to a 
smaller and larger, if any, value of P (Fig. 2.). 

If a new state coincides with one of them by the 
criterion P, then the paths leading to it are compared by 
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the criterion Q and the best of them remains. In addition to 
coincidence, three more options are possible: 
 for the new state, the second criterion is less than for 

A i.e. QC≤ QA. The new state is rejected, since it is 
not  better  than existing  by any criterion. 

Further comparisons are made with the closest state 
exceeding state C by criterion P (point B in Fig. 2). If  
QC <QB or there is no such state B, then the new state C is 
included in the list of states of  the stage being formed. 
 if QC≥QB, then state B is excluded from the list, 

state C takes its place. In this case, one or more 
states with higher values of P and lower values of Q 
compared to state C may be excluded. In other words, 
at each stage Pareto set of states is formed. 

If not all stages are formed, then go to step 2; otherwise, 
from the Pareto set we take the state that is necessary for 
the meaning of the problem. In the problems considered, 
this is the state with the highest Q. 

The algorithm is easily generalized if there are more 
state parameters and when replacing maximization with 
minimization. So, with the number of state parameters 
greater than 1, for example, when a vehicle is loaded with 
items of a given weight and volume and if there are 
restrictions on the total weight and total volume, a 
three-criteria problem is considered (minimum total 
weight and total volume and maximum cost). In any case, 
at each step, only the Pareto set of states should be left. 

Applicability conditions for a dynamic programming 
algorithm with state rejection: 
1. All conditions of applicability of the traditional 

method of dynamic programming must be satisfied; 
2. In each of the states at every stage, the same actions 

(actions on the system) should lead to the same 
increments of the objective function and parameters 
that determine the state. 

3. If there are restrictions on the state parameters, then 
for any admissible trajectory which starts from the 
dominated state, (which will be rejected) the 
corresponding increments of the parameters 
(step-by-step actions on the system) should lead to 
the permissible trajectory, if we apply these actions, 
starting from the dominant (which will be left) state. 

If these conditions are met, then from the best 
(Pareto-dominant) state, we can always continue the best 
of the path leading to it, making the same decisions and, 
therefore, getting the same increments of the objective 
function as from the worst (dominated) state. This means 
that the advantage of the dominant state can be maintained 
until the end of the process. In other words, the dominated 
state is “forever behind” and therefore it is rejected and its 
continuations are not analyzed. 

6. Results of Solving Two-parameter 
Tasks 

An increase in the state parameters number sharply 
enlarges the amount of computation in the implementation 
of the traditional dynamic programming algorithm and 
can create computational difficulties even when using 
modern computers. To a large extent, these difficulties can 
be overcome in solving problems that allow the rejection 
of states. The efficiency of the state rejection algorithm 
was tested on two tasks. The first task is the optimal 
loading of the vehicle with items of various cost, weight 
and volume. The total volume and weight are limited, but 
the number of copies of each item is not limited. 

The problem was solved using the outlined above 
algorithm with the rejection of states, that is, with the 
formation at each stage of the Pareto set of a three-criteria 
problem (weight, volume, cost). Comparative calculations 
were carried out using the new algorithm and the 
traditional R. Bellman algorithm (without splitting the 
regular grid of states and rejecting the hopeless paths 
leading to the same state). The number of objects 
consistently increased, and the calculation was carried out 
at a fixed load capacity W = 600 units of weight and 
capacity V = 500 units of volume. The source data was 
pseudo-random numbers. The calculations were carried 
out on a personal computer with an Intel Core 2 
DUO2400 MHz processor and 2048 MB of RAM. 

By modern standards, this is a low-power computer, but 
for comparative calculations it is enough. 

A different number of items was considered. Table 2 
summarizes some of the results. 

Table 2.  The results of the calculations 

Number of items 
(pcs) 

R. Bellman’s           algorithm State rejection            algorithm 

Number of states Counting time (sec) Number of states Counting time (sec) 

10 23514 11,02 646 0,30 

20 479248 121,51 17116 12,23 

30 1816000 1339,43 36320 25,30 

50 7409484 7314,21 145284 138,97 

75 10589540 8580,46 203645 156,80 

100 13871196 10773,10 256874 189,52 

150 21588545 13108,23 392519 226,65 
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The second two-parameter problem is as follows. 
An enterprise can produce N types of products using 

one (any) of two types of raw materials, the quantities of 
which are X and Y, respectively. For the production of 
one product of the i-th type, xi or yi units of raw materials 
of the first and second type are required, respectively. The 
number of products manufactured per month is limited by 
the production capacity ai, regardless of the raw materials 
used. It is required to determine the quantity and the type 
of products manufactured per month, so that their total 
cost would be maximum. The formal statement of the 
problem is as follows. 

Find max         

                          

under restrictions     

kx
i + ky

i≤ai (1 ≤i≤N). 

Here 
ci ≥0 - the price of one product of the i-th type, 
xi- the amount of raw materials X necessary for the 

manufacture of products of the i-th type, 
yi- the amount of raw materials Y necessary for the 

manufacture of products of the i-th type, 
ai≥0 -the maximum  number of products of the i-th type, 

which can be made in a month, 
ki

x ≥0-the number of products of the i-th type made 
from  raw  materials X, 

ki
y ≥0- the number of products of the i-th type made 

from  raw materials Y. 
The next step is to determine the number of products of 

the i-th type (i = 1,2, ..., N) in addition to those already 
manufactured, and the system states are the corresponding 
total quantities of raw materials of the first and second 
types, which were used for all already manufactured 
products. 

In this problem, at every stage, we fix the number of 
products from raw materials of the second type and the 
corresponding amount of this raw material (starting from 
zero) and sequentially increase the number of products 
from raw materials of the first type from zero until the 
production capacity limit is satisfied. Next, we enlarge 
and fix the number of products from raw materials of the 
second type and sequentially increase the number of 
products from raw materials of the first type, etc. 

This takes into account restrictions on the amount of 
raw materials of each type. 

At every step, we obtain the Pareto set of solutions to 
the three-criteria problem, from which, after all steps, we 
select the solution with the maximum value of the 
objective function and, by returning, restore the trajectory 
and determine the unknowns  ki 

x and ki 
y
 . 

The effectiveness of the new algorithm was evaluated 
in comparison with the R. Bellman algorithm. In the 
calculations, the number of types of products consistently 
increased while maintaining fixed quantities of raw 
materials X = 261 and Y = 259. For xi, yi, ai, 
pseudo-random numbers were used. 

Some of the results are presented in Table 3, whereby it 
follows that the algorithm with the rejection of states 
turned out to be more efficient than the traditional 
dynamic programming algorithm. This difference 
increases with a large number of stages, since the costs of 
rejecting non-Pareto states are insignificant, and their 
number increases sharply with growing dimension of the 
problem. 

With the number of types of products 100, the new 
algorithm worked 28 times faster than the traditional, and 
with 10 types of products - 14 times. 

Table 3.  The results of the calculations 

The number of types of 
products (pcs) 

R. Bellman’s            algorithm State rejection algorithm 

Number of states Counting time (sec) Number of states Counting time (sec) 

10 98451 212,33 7551 15,38 

20 850710 1547,21 24306 59,14 

30 2520180 2647,26 70005 108,34 

50 3095198 3822,21 83654 147,63 

75 3626036 4758,64 95422 186,71 

100 4366722 6354,73 122519 226,55 
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7. Discussion 
The above mentioned conditions for the applicability of 

the algorithm with the rejection of states are sufficient, but 
not all of them are necessary, since the advantage of the 
dominant state, identified at some step, can remain until 
the end of the process even if it decreases at the next 
steps. 

The speed of the algorithm with the rejection of 
hopeless states depends on their number, which in turn 
depends not only on a specific task, but also on specific 
numerical values of the source data. 

So in the knapsack problem, if for each item the values 
of weight and cost are numerically equal, then there is no 
rejection of states. 

A large percentage of state rejection and consequently 
the reduction of the counting time in the above calculation 
results is explained by the fact that pseudo random 
numbers were used as the initial data. So items appeared 
to have less weight and volume, but a greater cost than 
many of the other objects. 

In other words, this means that if, for example, in the 
task of loading vehicles, the weight, volume and cost of 
items are considered as criteria, then in the corresponding 
criteria set there are dominated points. Corresponding 
items cannot be selected for loading, if items that have 
advantages over them are in sufficient numbers. In general, 
if there is one point that dominates all the others, then no 
other items can be selected. 

A feature of the algorithm with the rejection of states in 
the presence of dominated points in the initial data is that 
the counting time depends on the order in which items are 
examined. Starting from the dominant items, it is possible 
to reduce the counting time significantly due to earlier 
rejection of hopeless states. 

It is also advisable to pre-process the source data in 
order to exclude dominant points. 

For one-parameter problems, the time spent on 
searching and rejecting hopeless states when using the 
above algorithm is insignificant, but if such a rejection 
takes place, then reducing the counting time is 
significantly  more than  these costs. 

For two-parameter problems, the detection and 
rejection of hopeless states is more complicated, but even 
in this case it can have a significant effect both in the 
presence and absence of dominant points among the initial 
data. 

8. Conclusions 
The implementation of dynamic programming in 

specific algorithms for solving applied tasks depends on 
the characteristics of the task. For example but not limited 
this in order to approximate plane curves, we have to use 
the traditional algorithm with a partition of the state grid 
[10,11]. But many tasks allow the use of more efficient 

algorithms. 
Tasks, in which dynamic programming allows to obtain 

formulas for calculating the optimal trajectory without 
enumeration options, is relatively rare, in contrast to the 
rejection of options. 

The list of tasks in which it is advisable to use dynamic 
programming with rejection of states is not limited to 
those considered ones in this article. For example the 
well-known problem of the optimal distribution of 
financial resources between competing investment 
projects is described by the same model as the knapsack 
problem and can be solved using the above algorithm. The 
same algorithm can be used to solve other optimization 
problems: 
 calculation of the optimal timing of equipment 

replacement; 
 the choice of methods (mechanisms) for the 

production of work; 
 selection of suppliers of goods supplied in batches of 

various volumes and prices. This task differs from 
the problem of optimal loading of vehicles only in 
the sign of inequality –restriction on the total weight, 
which does not interfere with the use of the 
algorithm with state rejection. 

As a result, it can be stated that in problems that allow 
the rejection of states, the new algorithm, as a rule, is 
more efficient than the traditional R. Bellman algorithm, 
both in terms of the amount of memory used and the 
counting time, but the class of such problems is much 
narrower than for the traditional algorithm. 
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