
Mathematics and Statistics 8(3): 339-346, 2020 http://www.hrpub.org
DOI: 10.13189/ms.2020.080313

High-speed Dynamic Programming Algorithms in
Applied Problems of a Special Kind

V. I. Struchenkov*, D. A. Karpov

Department of General Informatics, Institute of Cybernetics of the Russian Technological University (MIREA), Russia

Received March 24, 2020; Revised April 28, 2020; Accepted May 20, 2020

Copyright ©2020 by authors, all rights reserved. Authors agree that this article remains permanently open access under
the terms of the Creative Commons Attribution License 4.0 International License

Abstract The article discusses the solution of applied
problems, for which the dynamic programming method
developed by R. Bellman in the middle of the last century
was previously proposed. Currently, dynamic
programming algorithms are successfully used to solve
applied problems, but with an increase in the dimension of
the task, the reduction of the counting time remains
relevant. This is especially important when designing
systems in which dynamic programming is embedded in a
computational cycle that is repeated many times.
Therefore, the article analyzes various possibilities of
increasing the speed of the dynamic programming
algorithm. For some problems, using the Bellman
optimality principle, recurrence formulas were obtained
for calculating the optimal trajectory without any analysis
of the set of options for its construction step by step. It is
shown that many applied problems when using dynamic
programming, in addition to rejecting unpromising paths
lead to a specific state, also allow rejecting hopeless states.
The article proposes a new algorithm for implementing
the R. Bellman principle for solving such problems and
establishes the conditions for its applicability. The results
of solving two-parameter problems of various dimensions
presented in the article showed that the exclusion of
hopeless states can reduce the counting time by 10 or
more times.
Keywords Dynamic Programming, System State,
Optimal Trajectory (path), Optimality Principle, Pareto
Sets

1. Introduction
The main provisions of dynamic programming were

formulated when considering a dynamic system, whose
state is determined by one or more parameters. At fixed
times the system is affected by external impacts (controls),

which convert it from one state to another. It is required to
find a sequence of impacts that transfers the system from a
given initial state to a final state with minimal total cost.
The sequence of actions determines the sequence of states,
i.e. the trajectory (path) of the system.

R. Bellman [1,2,3,4] formulated the principle of
optimality, the meaning of which is to go along the
optimal trajectory from any state to the final state if the
“past history” does not matter. The applicability
conditions of dynamic programming are as follows:
1. The objective function (costs) can be calculated in

stages, which are determined by the given moments
of the impact.

2. The set of possible paths from each state does not
depend on how the system got into this state.

3. The result of the impact on the system (step
transition) in each of the states does not depend on
how the system got into this state.

Back in the early 60s of the last century, R. Bellman
and his colleagues realized their method in solving a
number of practically important problems [1,2].

The method can be applied to the development of
optimal solutions in multi-stage processes, including those
cases when the division into stages is done artificially
[2,3,4,5]. Currently, dynamic programming algorithms are
successfully used to solve applied problems from various
fields of practice [6].

One of the latest proposals is the approximation of
plane curves by splines of complex structure [7].

In the original algorithm, it was proposed to carry out
calculations from the final state to the initial one
(backward-sweep method [1,2,4]). For this, all possible
states of the system must be known. For this reason, it was
recommended [1,3,4,8] to solve many applied problems
using a regular grid of states.

In accordance with the principle of optimality, from
each state to the final state it is necessary to go along the
optimal path. But under the same conditions, each state

340 High-speed Dynamic Programming Algorithms in Applied Problems of a Special Kin

from the initial state should be reached along the optimal
path. In other words, of all the paths leading to a certain
state, we need to keep only the best one.

It corresponds to a direct - sweep method [3,4]. In this
case, the set of possible states of the system can be
constructed in stages and using of a regular grid of states
is not necessary.

It should be noted that with an increase in the number
of states at each stage and the number of stages, the
number of analyzed (and memorized) transitions increases
sharply, which can lead to unacceptable costs of computer
time, even when using modern public computers.
Therefore, the development of high-speed dynamic
programming algorithms continues to be relevant,
especially for the tasks in which the state is described by
more than one parameter. This is especially important
when developing systems in which dynamic programming
is embedded in a repeatedly repeated calculation cycle.

Improving the performance of dynamic programming
algorithms is achieved when rejecting not only hopeless
paths leading to a specific state, but when rejecting
hopeless states and all their incoming and outgoing paths.

2. Objectives
The main goals of this article are to show how the idea

of rejecting hopeless states is realized in solving many
applied problems for which traditional dynamic
programming algorithms were previously proposed,
formulate additional conditions for the applicability of the
algorithm with rejecting states, and present the results of
comparative calculations which confirm the effectiveness
of the new algorithm. In addition, the article aims at
showing how, in some applied problems, dynamic
programming allows one to obtain recurrence formulas for
calculating the optimal trajectory without enumeration of
options at all.

3. Some Tasks that Allow the
Calculation of the Optimal
Trajectory without Enumerating
Options

Let us consider the task of planning supplies (purchases)
of equipment for the development of production (trade,
etc.) in several stages (for example, months or quarters)
for a given time. Let T be the number of stages, ci - the
cost of supplying a unit of equipment (price) at the i-th
stage, xi- the number of units of equipment delivered (i =
1,2, ..., T-1), ri and si, the number of units used and
equipment already supplied at the i-th stage respectively,
(si ≥ri and ri + 1≥ ri for all i). hi- the cost of storing a unit
of unused equipment. It is required to find the sequence
xi≥0(i = 1,2, ..., T-1) for which the total costs for all

stages are minimal. It should be noted that the operating
costs of the equipment are not taken into account, since
the number of used units of equipment ri is given and does
not depend on xi (i = 1,2, ..., T-1). At the last stage rТ units
of equipment are operated and there are no supplies.

Deliveries and commissioning refer to the end of the
stage, therefore si+1 = si + xi (i = 1,2, ..., T-1). We assume
that s1 = r1.

The simplest solution is to supply the minimum amount
of equipment for each stage, that is, take xt +1 = rt +1-rt, but
this maybe a bad solution if equipment is more expensive
at last stage. Let zi denotes the costs at the i-th stage and
Zi the total costs for the i stages.

Z1=c1x1.
Z2=z1+z2= c1x1+ c2x2+ h2(s2-r2)=

= s2(c1 -c2+h2)- c1r1- h2r2+c2s3. (1)

Here we use x1= s2 -s1; x2= s3 -s2 and s1 =r1.
Of all the paths leading to the given state s3, we must

leave the one for which Z2 is maximum. This means that
from all the possible states of the second stage s2, we need
to take the one that, for a given s3, gives a maximum of
Z2 = Z2*. But it can be seen from formula (1) that Z2 is a
linear function of s2 for a fixed s3. Therefore, for
d2 = c1-c2 + h2> 0, we take the minimum s2 = r2, and for
d2 <0, we take the maximum s2 = s3, since x2≥= 0

In the first case, from (1) we obtain
Z2

*= c1(r2 – r1)- c2r2+ c2s3=p2+q2s3. Here q2= c2 and
p2= c1(r2 – r1)- c2r2. In the second case,
Z2

*=- c1r1-h2r2 +(c1+ h2) s3= p2+q2s3, but now
P2=- c1r1-h2r2 and q2= c1+ h2. If c1 -c2+h2=0 the obtained
pairs of p2 and q2 coincide. In this case, we can take any
value of s2, satisfying the condition r2≤ s2 ≤s3.

If we now take Zi=pi +qisi+1, then for Zi+1 we get
Zi+1= pi +qisi+1 +ci+1(si+2- si+1)+hi+1(si+1- ri+1) = pi - hi+1 ri+1+
si+1(qi- ci+1+ hi+1)+ ci+1si+2

For a fixed si+2 it is necessary to find si+1 at which the
costs for Zi+1 stages are minimal. If di+1= qi- ci+1+ hi+1>0
we take si+1= ri+1, otherwise si+1=si+2. In any case,
Zi+1

*=pi+1 + qi+1si+2, but in the first case (di+1= qi- ci+1+
hi+1>0) we get pi+1= pi+ ri+1(qi- ci+1) and qi+1= ci+1, and in
the second case pi+1= pi- hi+1ri+1 and qi+1= qi+ hi+1.

It turns out that in any state of sk at any stage we need
to go from the state of the previous stage with the lowest
value (rk-1) or with a value equal sk.

Denoting q1=c1 and p1= -c1r1, for i=1,2,…,T-2 we
obtain the following algorithm:
1. i=1;
2. Calculate di+1= qi- ci+1+ hi+1 and remember it.
3. If di+1≥0, calculate pi+1= pi+ ri+1(qi- ci+1) and qi+1= ci+1;

otherwise pi+1= pi- hi+1ri+1 and qi+1= qi+ hi+1.
Remember pi+1 and qi+1.

4. If i<T-2 then increase i by 1 and go to step 2,
otherwise calculate ZT-1= pT-1+ qT-1 rT.

This is the minimum value of the objective function,

 Mathematics and Statistics 8(3): 339-346, 2020 341

since at the stage with number T, the costs are equal to
zero: there are no supplies and sT=rT, since sT<rT is
unacceptable, and sT>rT means unnecessary costs for
equipment which will not be used.

We will restore the optimal trajectory, passing
sequentially from the last stage to the second (Fig. 1). If
dT-1>0, then go from rT to rT-1, otherwise save rT, etc.

Figure 1. Recovery of the optimal trajectory

The problem under consideration can be solved using
the traditional dynamic programming algorithm with a
partition of a regular state grid, but the above algorithm is
preferable. It allows, in addition to the initial data, to
remember only the signs of all the calculated values of di
and only the last calculated pair pi,qi. The amount of
computation is also insignificant.

If raw materials or, for example, building materials and
not equipment that is not consumed are to be supplied, the
algorithm is almost the same, but the calculation formulas
are different.

The needs for raw materials for work at each stage are
denoted by ri, and the actual deliveries at each stage
through (i=1,2,…T).

We calculate the partial sums: R1=r1 and then
Ri+1= Ri + ri+1 for all i=1,2,…,T-1. The state of the system
at the i-th stage will be Si i.e. the total amount of raw
materials delivered for all previous stages, including the
current one. S1=s1;
Si+1= Si + si+1; i=1,2,…,T-1. The conditions si ≥ri and

ri+1≥ri are optional (except for s1 ≥r1). Instead, we have

Si ≥ Ri (i=1,2,…,T-1) and ST = RT.

The costs of delivery (сi) and storage (hi) of a unit of
raw materials at the i-th stage are known.

Costs for the first two stages Z2= c1S1 + h1(S1-R1) +
c2(S2-S1) + h2(S2-R2) = (c1-c2+h1)S1 + (c2+h2)S2 - h1R1 -
h2R2.

It is required to find S1, which for a fixed S2 gives the
minimum value of Z2

*. If d2= c1-c2+h1≥0 we take S1= R1,
otherwise S1= S2. In any case, Z2

* is written in the form
Z2

*=p2 +q2S2, but in the first case p2= R1(c1-c2)- h2R2 and
q2= c2+h2, and in the second case p2=-h1R1-h2R2;
q2= c1+h1+ h2.

Further, if Zi= pi +qiSi, then
Zi+1= pi- hi+1 Ri+1+ (qi- ci+1) Si+(c i+1+h i+1) Si+1.
The choice of Si for fixed Si+1 is determined by the sign

di+1= qi- ci+1. If di+1≥0 then Si=Ri, otherwise Si=Si+1. In
any case, Zi+1

*= pi+1+ qi+1Si+1. But if di+1≥0 we get
pi+1= pi+Ri(qi- ci+1)-hi+1Ri+1 and qi+1= ci+1+ hi+1, otherwise
pi+1= pi -hi+1Ri+1; qi+1= qi+ hi+1. Setting p1=-h1R1 and
q1 =с1+ h1, we can apply the above algorithm by
sequentially calculating di+1 and pairs pi+1,qi+1 using the
formulas obtained for i=1,2...,T-1. After calculating all Si
we calculate si= Si+1- Si. (i=T-1,T-2, …,1).

4. Dynamic Programming with the
Rejection of Hopeless States

We consider the integer linear programming problem,
known as the knapsack problem [8,9]:

Find max z=c1x1+c2x2+…+cnxn for
a1x1+a2x2+…+anxn≤b, xj ∈ {0,1},aj>0; cj>0; j =1,…,n.

We can assume that the problem is the optimal
distribution of a given resource b among n consumers, the
j-th consumer receives aj resource units or nothing. But
we can talk about the problem of the optimal choice of n
items with given costs cj for loading a vehicle with
carrying capacity b [3]. When choosing the j-th item, a
resource is spent on the amount of aj and the effect cj is
achieved. We need to choose so as not to consume a
resource greater than b and achieve the maximum total
effect z. The solution to this problem is given in the
literature as an example of using dynamic programming
[3,8]. The problem considered in [3] is in loading a car
with a carrying capacity of 35 units of weight with an
optimal set of six items, the weights and costs of which
are shown in table 1.

Table 1. Source data

Item I1 I2 I3 I4 I5 I6

Weight qi 4 7 11 12 16 20

Cost сi 7 10 15 20 27 34

It is required to choose such items, the total weight of
which does not exceed 35, and the total cost is maximum.

The problem is solved by the backward-sweep method
using a state grid with discrete d = 1. At each of the six
stages, 36 states are considered [3].

Note that if we build a trajectory from “start to end”,
then after the first stage there are only 2, after the second
4, etc., but not 36 states. Moreover if the weights of
objects are non-integer (for example, 7.28; 11.65, etc.),
then for the exact solution of the problem we will have to
use d = 0.01, and the number of states (grid nodes) at each
stage increases by two orders of magnitude with the same
number of items, and dynamic programming becomes less
efficient than method of full enumeration.

But the state grid is not needed at all, since it is possible
to consider the already used resource as the state of the
system, build all realistically achievable states in stages,
calculating the total cost of the items taken for each of

342 High-speed Dynamic Programming Algorithms in Applied Problems of a Special Kin

them, and if two (or more) paths fall into the same state
leave the one to which the maximum cost corresponds. In
the problem under consideration, such a state occurs after
the third stage: 11 units of the resource are used. Two
ways are brought into this state: (0,0,11) take only the
third item and (4,7,0) take only the first two. On the first
path, the total cost is 15, and on the second path 17 (see
table 1 above). The first path and all its extensions are
rejected.

We will consider two states after the fourth stage: the
path (4,0,0,12): only the first and fourth items were taken
and the path (0,7,11,0): only the second and third items
were taken. For the first of them, 16 units of weight were
used and the total cost of 27 (7 + 0 + 0 + 20) was obtained.
And for the second, 18 units of weight were used and the
cost was 25 (0 + 10 + 15 + 0). The second state 18 (25) is
unpromising and can be rejected, since it is easier to place
the remaining items with a reserve of the load-carrying
capacity resource, and the opportunities of choice on the
next stages are the same.

At the fifth stage, state 22 (32) is unpromising (since
there is state 20 (34)), as well as states 27 (42), 30 (45),
and 34 (52). In general, after the fifth stage, only 15 (and
not 32 and not 36) states will remain. Therefore, the
algorithm with rejection of states in this problem is more
efficient than the traditional algorithm. The presence of
non-integer item weights does not complicate the task
when using it.

In a more general case, there are several instances of
each item, but the appearance of hopeless states is also
possible.

For example, there are many items, each having a
duplicate. If the weight of the first three items is 4; 7 and
12, and the cost is 8, 15 and 16, respectively, then at the
third stage a hopeless state arises. Indeed, taking only the
first and two second items, we get the total weight of
4 +7 +7 = 18 and the cost of 8 + 15 + 15 = 38.

And if we take only the first two and the third item, we
get the weight 4 + 4 + 12 = 20 and the cost 8 + 8 + 16 =
32, that is, the weight is more, and the cost is less. State
20 (32) is unpromising, since at the same stage there is
state 18 (38), and the possibilities and consequences of
making decisions about all subsequent items are the same
for them. With an increase in the number of instances of
items, the number of hopeless states can increase
significantly.

5. The Algorithm
Now we describe the dynamic programming algorithm

with rejection of states and state the conditions for its
applicability.

So far we assume that the state is determined by one
parameter P. We will consider a two-criterion problem:
the first criterion is parameter P. The second parameter Q
is the value of the objective function corresponding to the

variant of the trajectory leading to the given state. In
resource allocation problems P is the amount of resource
used (a minimum is needed), and for Q-, a maximum is
needed. In the task of loading vehicles, P is the total
weight of the selected items, and Q is their total cost.
1. States after the first stage (take a different number of

copies of the first item), we order by one of the
parameters, for example, by P, and calculate the Q
value for each of them.

2. We form successively the states of the next stage,
obtained as extensions of the paths leading to the
states of the last considered stage while maintaining
order. Several continuations can proceed from each
state. We believe that they are ordered by
incrementing the parameter P. In the problem with
several instances of each item, this corresponds to the
choice of 1,2,3 ... etc. copies of the item that
corresponds to the stage under consideration. The
formation of the next stage begins with a transition
from each state with a minimum increment of
parameter P.

As applied to the knapsack problem, the process is
shown in Fig.2.

Figure 2. To the rejection of states in the knapsack problem

If qi is the weight of the item i, then after the first step
we have two states 0 and q1, after the second step we have
the same two states (do not take the second item) and two
more new ones (take the second item without the first - q2
or with the first q1 + q2). After the third step, we have the
same 4 states (did not take the third item) and 4 new ones,
a total of 8 states, etc.

For this task, the minimum increment P is zero (we
don’t take the next item), and all the states of the last
formed stage are simply rewritten into the list of states at a
new stage. Further, we sequentially consider transitions
with the following increments параметра Р. In the
knapsack problem with each attempt to form a new state
(point C in Fig. 2), the already formed states A and B
(adjacent to it) were determined. They correspond to a
smaller and larger, if any, value of P (Fig. 2.).

If a new state coincides with one of them by the
criterion P, then the paths leading to it are compared by

 Mathematics and Statistics 8(3): 339-346, 2020 343

the criterion Q and the best of them remains. In addition to
coincidence, three more options are possible:
 for the new state, the second criterion is less than for

A i.e. QC≤ QA. The new state is rejected, since it is
not better than existing by any criterion.

Further comparisons are made with the closest state
exceeding state C by criterion P (point B in Fig. 2). If
QC <QB or there is no such state B, then the new state C is
included in the list of states of the stage being formed.
 if QC≥QB, then state B is excluded from the list,

state C takes its place. In this case, one or more
states with higher values of P and lower values of Q
compared to state C may be excluded. In other words,
at each stage Pareto set of states is formed.

If not all stages are formed, then go to step 2; otherwise,
from the Pareto set we take the state that is necessary for
the meaning of the problem. In the problems considered,
this is the state with the highest Q.

The algorithm is easily generalized if there are more
state parameters and when replacing maximization with
minimization. So, with the number of state parameters
greater than 1, for example, when a vehicle is loaded with
items of a given weight and volume and if there are
restrictions on the total weight and total volume, a
three-criteria problem is considered (minimum total
weight and total volume and maximum cost). In any case,
at each step, only the Pareto set of states should be left.

Applicability conditions for a dynamic programming
algorithm with state rejection:
1. All conditions of applicability of the traditional

method of dynamic programming must be satisfied;
2. In each of the states at every stage, the same actions

(actions on the system) should lead to the same
increments of the objective function and parameters
that determine the state.

3. If there are restrictions on the state parameters, then
for any admissible trajectory which starts from the
dominated state, (which will be rejected) the
corresponding increments of the parameters
(step-by-step actions on the system) should lead to
the permissible trajectory, if we apply these actions,
starting from the dominant (which will be left) state.

If these conditions are met, then from the best
(Pareto-dominant) state, we can always continue the best
of the path leading to it, making the same decisions and,
therefore, getting the same increments of the objective
function as from the worst (dominated) state. This means
that the advantage of the dominant state can be maintained
until the end of the process. In other words, the dominated
state is “forever behind” and therefore it is rejected and its
continuations are not analyzed.

6. Results of Solving Two-parameter
Tasks

An increase in the state parameters number sharply
enlarges the amount of computation in the implementation
of the traditional dynamic programming algorithm and
can create computational difficulties even when using
modern computers. To a large extent, these difficulties can
be overcome in solving problems that allow the rejection
of states. The efficiency of the state rejection algorithm
was tested on two tasks. The first task is the optimal
loading of the vehicle with items of various cost, weight
and volume. The total volume and weight are limited, but
the number of copies of each item is not limited.

The problem was solved using the outlined above
algorithm with the rejection of states, that is, with the
formation at each stage of the Pareto set of a three-criteria
problem (weight, volume, cost). Comparative calculations
were carried out using the new algorithm and the
traditional R. Bellman algorithm (without splitting the
regular grid of states and rejecting the hopeless paths
leading to the same state). The number of objects
consistently increased, and the calculation was carried out
at a fixed load capacity W = 600 units of weight and
capacity V = 500 units of volume. The source data was
pseudo-random numbers. The calculations were carried
out on a personal computer with an Intel Core 2
DUO2400 MHz processor and 2048 MB of RAM.

By modern standards, this is a low-power computer, but
for comparative calculations it is enough.

A different number of items was considered. Table 2
summarizes some of the results.

Table 2. The results of the calculations

Number of items
(pcs)

R. Bellman’s algorithm State rejection algorithm

Number of states Counting time (sec) Number of states Counting time (sec)

10 23514 11,02 646 0,30

20 479248 121,51 17116 12,23

30 1816000 1339,43 36320 25,30

50 7409484 7314,21 145284 138,97

75 10589540 8580,46 203645 156,80

100 13871196 10773,10 256874 189,52

150 21588545 13108,23 392519 226,65

344 High-speed Dynamic Programming Algorithms in Applied Problems of a Special Kin

The second two-parameter problem is as follows.
An enterprise can produce N types of products using

one (any) of two types of raw materials, the quantities of
which are X and Y, respectively. For the production of
one product of the i-th type, xi or yi units of raw materials
of the first and second type are required, respectively. The
number of products manufactured per month is limited by
the production capacity ai, regardless of the raw materials
used. It is required to determine the quantity and the type
of products manufactured per month, so that their total
cost would be maximum. The formal statement of the
problem is as follows.

Find max

under restrictions

kx
i + ky

i≤ai (1 ≤i≤N).

Here
ci ≥0 - the price of one product of the i-th type,
xi- the amount of raw materials X necessary for the

manufacture of products of the i-th type,
yi- the amount of raw materials Y necessary for the

manufacture of products of the i-th type,
ai≥0 -the maximum number of products of the i-th type,

which can be made in a month,
ki

x ≥0-the number of products of the i-th type made
from raw materials X,

ki
y ≥0- the number of products of the i-th type made

from raw materials Y.
The next step is to determine the number of products of

the i-th type (i = 1,2, ..., N) in addition to those already
manufactured, and the system states are the corresponding
total quantities of raw materials of the first and second
types, which were used for all already manufactured
products.

In this problem, at every stage, we fix the number of
products from raw materials of the second type and the
corresponding amount of this raw material (starting from
zero) and sequentially increase the number of products
from raw materials of the first type from zero until the
production capacity limit is satisfied. Next, we enlarge
and fix the number of products from raw materials of the
second type and sequentially increase the number of
products from raw materials of the first type, etc.

This takes into account restrictions on the amount of
raw materials of each type.

At every step, we obtain the Pareto set of solutions to
the three-criteria problem, from which, after all steps, we
select the solution with the maximum value of the
objective function and, by returning, restore the trajectory
and determine the unknowns ki

x and ki
y
 .

The effectiveness of the new algorithm was evaluated
in comparison with the R. Bellman algorithm. In the
calculations, the number of types of products consistently
increased while maintaining fixed quantities of raw
materials X = 261 and Y = 259. For xi, yi, ai,
pseudo-random numbers were used.

Some of the results are presented in Table 3, whereby it
follows that the algorithm with the rejection of states
turned out to be more efficient than the traditional
dynamic programming algorithm. This difference
increases with a large number of stages, since the costs of
rejecting non-Pareto states are insignificant, and their
number increases sharply with growing dimension of the
problem.

With the number of types of products 100, the new
algorithm worked 28 times faster than the traditional, and
with 10 types of products - 14 times.

Table 3. The results of the calculations

The number of types of
products (pcs)

R. Bellman’s algorithm State rejection algorithm

Number of states Counting time (sec) Number of states Counting time (sec)

10 98451 212,33 7551 15,38

20 850710 1547,21 24306 59,14

30 2520180 2647,26 70005 108,34

50 3095198 3822,21 83654 147,63

75 3626036 4758,64 95422 186,71

100 4366722 6354,73 122519 226,55

 Mathematics and Statistics 8(3): 339-346, 2020 345

7. Discussion
The above mentioned conditions for the applicability of

the algorithm with the rejection of states are sufficient, but
not all of them are necessary, since the advantage of the
dominant state, identified at some step, can remain until
the end of the process even if it decreases at the next
steps.

The speed of the algorithm with the rejection of
hopeless states depends on their number, which in turn
depends not only on a specific task, but also on specific
numerical values of the source data.

So in the knapsack problem, if for each item the values
of weight and cost are numerically equal, then there is no
rejection of states.

A large percentage of state rejection and consequently
the reduction of the counting time in the above calculation
results is explained by the fact that pseudo random
numbers were used as the initial data. So items appeared
to have less weight and volume, but a greater cost than
many of the other objects.

In other words, this means that if, for example, in the
task of loading vehicles, the weight, volume and cost of
items are considered as criteria, then in the corresponding
criteria set there are dominated points. Corresponding
items cannot be selected for loading, if items that have
advantages over them are in sufficient numbers. In general,
if there is one point that dominates all the others, then no
other items can be selected.

A feature of the algorithm with the rejection of states in
the presence of dominated points in the initial data is that
the counting time depends on the order in which items are
examined. Starting from the dominant items, it is possible
to reduce the counting time significantly due to earlier
rejection of hopeless states.

It is also advisable to pre-process the source data in
order to exclude dominant points.

For one-parameter problems, the time spent on
searching and rejecting hopeless states when using the
above algorithm is insignificant, but if such a rejection
takes place, then reducing the counting time is
significantly more than these costs.

For two-parameter problems, the detection and
rejection of hopeless states is more complicated, but even
in this case it can have a significant effect both in the
presence and absence of dominant points among the initial
data.

8. Conclusions
The implementation of dynamic programming in

specific algorithms for solving applied tasks depends on
the characteristics of the task. For example but not limited
this in order to approximate plane curves, we have to use
the traditional algorithm with a partition of the state grid
[10,11]. But many tasks allow the use of more efficient

algorithms.
Tasks, in which dynamic programming allows to obtain

formulas for calculating the optimal trajectory without
enumeration options, is relatively rare, in contrast to the
rejection of options.

The list of tasks in which it is advisable to use dynamic
programming with rejection of states is not limited to
those considered ones in this article. For example the
well-known problem of the optimal distribution of
financial resources between competing investment
projects is described by the same model as the knapsack
problem and can be solved using the above algorithm. The
same algorithm can be used to solve other optimization
problems:
 calculation of the optimal timing of equipment

replacement;
 the choice of methods (mechanisms) for the

production of work;
 selection of suppliers of goods supplied in batches of

various volumes and prices. This task differs from
the problem of optimal loading of vehicles only in
the sign of inequality –restriction on the total weight,
which does not interfere with the use of the
algorithm with state rejection.

As a result, it can be stated that in problems that allow
the rejection of states, the new algorithm, as a rule, is
more efficient than the traditional R. Bellman algorithm,
both in terms of the amount of memory used and the
counting time, but the class of such problems is much
narrower than for the traditional algorithm.

REFERENCES
[1] R. Bellman. Dynamic Programming, Princeton University

Press, Princeton, 1957.
[2] R. Bellman and S. Drejfus. Applied Dynamic Programming,

Princeton University Press, Princeton, 1962.
[3] E.S. Wentzel. Operations Research: Challenges, principles,

metodologiya. KnoRus, Moscow, 2010.

[4] Headmy A. Taha. Introduction to Operations Research,
10th edition: in Russian.- M. Williams Publishing House,
2019.

[5] V.S. Mikhalevich. Sequential optimization algorithms and
their application, Cybernetics. No. 19.1965.

[6] G. Cavagnari, A. Marigonda, B. Piccoli. Generalized
dynamic programming principle and sparse mean-field
control problems. Journal of Mathematical Analysis and
Applications, vol.481, Issue 1, 2020.

[7] D. A. Karpov , V. I. Struchenkov , "Special Spline
Approximation in CAD Systems of Linear Structure
Routing," Mathematics and Statistics, Vol. 7, No. 5, pp.
151 - 157, 2019. DOI: 10.13189/ms.2019.070501.

346 High-speed Dynamic Programming Algorithms in Applied Problems of a Special Kin

[8] O.A. Kosorukov O.A., A.V. Mishchenko. Operations
research. Textbook for students universities studying the
specialty "Mathematical methods in economy.” M.: Exam,
2013.

[9] S. Martello, P. Toth. Knapsack Problems, Algorithms and
Computer Implementation, John Willey & Sons Ltd,
Chichester, 1990.

[10] V.I. Struchenkov. Piesewise Linear Approximation of Plane
Curves with Restrictions in Computer – Aided Design of
Railway Routes, World Journal of Computer Application
and Technology, vol. 2, № 1, 2014.

[11] V.I. Struchenkov. Computer Technologies in Linear
Structures Routing, Russian Technological Journal, 2017,
vol 5, No 1, 28-41 pp.

	1. Introduction
	2. Objectives
	3. Some Tasks that Allow the Calculation of the Optimal Trajectory without Enumerating Options
	4. Dynamic Programming with the Rejection of Hopeless States
	5. The Algorithm
	6. Results of Solving Two-parameter Tasks
	7. Discussion
	8. Conclusions
	REFERENCES

