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Abstract Leachate contamination in a landfill causes of
pollution that flowing down to the groundwater. There are
many methods to measure the groundwater quality. Mathe-
matical models are often used to describe the groundwater
flow. In this research, the affection of landfill construction
to groundwater-quality around rural area are focused. Three
mathematical models are combined. The first model is a
two-dimensional groundwater flow model. It provides the
hydraulic head of the groundwater. The second model is the
velocity potential model. It provides the groundwater flow
velocity. The third model is a two-dimensional vertically
averaged groundwater pollution dispersion model. The
groundwater pollutant concentration is provided. The forward
time centered technique with the centered in space, the forward
in space and the backward in space with all boundaries are
used to obtain approximate hydraulic head, the flow velocity in
x- and y- directions, respectively. The approximated ground-
water flow velocity is used to input into a two-dimensional
vertically averaged groundwater pollution dispersion model.
The forward time centered space technique with the centered
in space, the forward in space and the backward in space with
all boundaries are used to obtain approximate the groundwater
pollutant concentration. The proposed explicit forward time
centered spaced finite difference techniques to the groundwater
flow model the velocity potential model and the groundwater
pollution dispersion model give good agreement approximated
solutions.

Keywords Groundwater Model, Velocity Potential Model,
Groundwater Pollution Dispersion Model, Finite Difference
Method, Forward Time Centered Space, The Centered in
Space, The Forward in Space, The Backward in Space

1 Introduction

Industrial development often causes pollution problems.
Contamination of surface water causes pollution of chemicals
in water into groundwater, such as the removal of toxins in
landfills, solid waste into the ground. For example, ground-
water gets contaminated by leaching of nitrate generated from
fertilizer used on agricultural lands and waste dumps in ru-
ral and urban areas. The nitrate decrease ability of blood to
carry oxygen, resulting in oxygen deficiency in different body
parts linked to blue baby syndrome [1]. Salinity contamination
in groundwater in a rice field near marine shrimp aquaculture
farm leads to poor crop production[2]-[3]. As water percolated
down through soil and rocks, bacteria, fungi, and other such bi-
ological pollutants were naturally filtered out or diluted. But in
recent years, groundwater natural defence systems have been
vastly overextended. The sheer volume of pollutants sent un-
derground has escalated. Especially in the last century, when
the global population increased. There is a growing demand
of food and water. At the same time, the industry is quickly
advancing, in this way contaminating the environment. Rivers
and streams are also damaged by consumption and consump-
tion. Whenever the water is on the surface, it is damaged, and it
affects the quality of the groundwater. Since groundwater is the
water found under of the land that is accumulated on the ground
and sand, it is filtered from the ground, leaving the groundwater
clean. Groundwater exists mainly in an aquifer. The aquifer is
a body of saturated rock through which water can move. Since
underground water is moving in the underground, we cannot
tell the direction of groundwater movement where the ground-
water is. If we do not dig and drill underground. Henry Darcy
was interested in the description of groundwater flow. Until
nowadays, Darcy’s law is utilized describe in the mathematical
formulations in scientific disciplines concerned with measuring
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water flow. Therefore, we will be using groundwater modeling
of Darcy’s law. The groundwater modeling [5] describes phe-
nomena or to predict future behaviour. Groundwater systems
can be modeled using partial differential equations. The equa-
tion can solve by finite difference method and finite element
method. There have been studies of the groundwater modeling
simulation algorithm with finite difference method[6] by using
spreadsheets [7]-[8], MODFLOW [9].

In this research, a combination of three related groundwater
quality measurement models is proposed. The first model is a
two-dimensional vertically averaged groundwater flow model.
It is providing the hydraulic head of groundwater. The hy-
draulic head is transformed to be the groundwater flow veloc-
ity in the second model that is the velocity potential model.
The calculated flow velocity input into the third model. The
last model is a two-dimensional vertically averaged groundwa-
ter pollution dispersion model. The dispersion model provides
the pollutant concentration that is contaminated in the ground-
water. Explicit finite difference method, forward time central
space with a centered space technique, a forward space tech-
nique and a backward space technique on the boundary’s solu-
tion, are employed to approximate their solutions of all models.

2 Governing equation

The groundwater flow through soil is governed by the
Darcy’s law that be described by partial differential equation.

2.1 A two-dimensional vertically averaged groundwater
flow model

Groundwater flow can be described by a transient hydraulic
head flow model. The aquifer is assumed by a porous medium.
If we consider the homogeneous aquifer, the soil transmitting
will be uniform. The groundwater flow model is used to rep-
resent the behavior of hydraulic head. The transmission prop-
erty of geologic is hydraulic conductivity including the consid-
ered aquifer and their space. A primary tool for illustration of
groundwater flow is Darcy’s law. Assuming that the hydraulic
head in the considered area is vertically averaged. The domain
considered is assumed by Ω = {(x, y) : 0 ≤ x ≤ I, 0 ≤ y ≤
J}. The governing equation of Darcy’s flow is [6],

∂

∂x

(
Kx

∂h

∂x

)
+

∂

∂y

(
Ky

∂h

∂y

)
±W = S

∂h

∂t
, (1)

where h(x, y, t)(m) is the hydraulic head, Kx(m/day) is the
hydraulic conductivity in x-direction, Ky(m/day) is the hy-
draulic conductivity in y-direction, W (day−1) is the source
or sink function, S is the specific storage coefficient for all
(x, y, t) ∈ Ω × [0, T ] as shown in Fig. 1. If we consider ho-
mogeneous aquifer system, the hydraulic conductivity will be
constant Kx = Ky = K. Then ( 1 ) becomes

K

(
∂2h

∂x2
+
∂2h

∂y2

)
±W = S

∂h

∂t
, (2)

2.1.1 Initial condition

If the potential hydraulic head in the area is static, the initial
condition is assumed by

h(x, y, 0) = h0, for all (x, y) ∈ Ω,

where h0 (m) is a given averaged potential hydraulic head in
the considered area.

2.1.2 Boundary condition

The rates of change of the hydraulic head along the domain
boundaries are given by

∂h

∂y
(x, J, t) = BhN , for all 0 ≤ x ≤ I, t > 0, (3)

∂h

∂y
(x, 0, t) = BhS , for all 0 ≤ x ≤ I, t > 0, (4)

∂h

∂x
(0, y, t) = BhW , for all 0 ≤ y ≤ J, t > 0, (5)

∂h

∂x
(I, y, t) = BhE , for all 0 ≤ y ≤ J, t > 0, (6)

whereBhN ,BhS ,BhW andBhE are the rates of change of hy-
draulic head on the north, south, west and east domain bound-
aries as shown in Fig. 2.

Figure 1. Underground topography of the considered area

Figure 2. The boundary condition of groundwater flow model

2.2 Velocity potential model in two-dimensional velocity
fields

Velocity potential is a powerful tool in analyzing irrotational
flows. The groundwater flows model provides the hydraulic
head. The velocity potential model is also provided by the
hydraulic head. The groundwater flow velocity in x- and y-
directions can be obtained by [6],

u = −∂h
∂x
, (7)
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v = −∂h
∂y
, (8)

where u, v (m/day) are groundwater flow velocity in x- and y-
directions, respectively.

2.3 A two-dimensional vertically averaged groundwater
pollution dispersion model

An advection-diffusion model provides a continuous de-
scription of groundwater pollutant transport in the groundwa-
ter. A two-dimensional vertically averaged groundwater pollu-
tion dispersion model is [10]

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
= Dx

∂2C

∂x2
+Dy

∂2C

∂y2
+Ws, (9)

where C(x, y, t) (kg/m3) is groundwater pollutant concentra-
tion, u (m/day) is groundwater flow velocity in x-direction,
v (m/day) is groundwater flow velocity in y-direction, Dx

(m2/day) is the diffusion coefficient of groundwater pollution
through specified soil in x-axis, Dy (m2/day) is the diffusion
coefficient of groundwater pollution through specified soil in y-
axis and Ws (day−1) is groundwater pollutant sources or sink
function by contaminators.

2.3.1 Initial condition

If the potential groundwater pollutant concentration in the
consider area is described by

C(x, y, 0) = C0 for all (x, y) ∈ Ω,

where C0 (kg/m3) is a averaged potential groundwater pollu-
tant concentration in the considered area.

2.3.2 Boundary condition

The rates of change of the pollutant concentration along the
domain boundaries are given by

∂C

∂y
(x, J, t) = BCN , for all 0 ≤ x ≤ I, t > 0, (10)

∂C

∂y
(x, 0, t) = BCS , for all 0 ≤ x ≤ I, t > 0, (11)

∂C

∂x
(0, y, t) = BCW , for all 0 ≤ y ≤ J, t > 0, (12)

∂C

∂x
(I, y, t) = BCE , for all 0 ≤ y ≤ J, t > 0, (13)

where BCN , BCS , BCW and BCE are the rates of change of
the pollutant concentration on the north, south, west and east
domain boundary as shown in Fig. 3.

3 Numerical techniques
In this research, approximated solutions are obtained by fi-

nite difference techniques. A numerical solutions are based on
the concept that the partial differential equation can be replaced

Figure 3. The boundary condition of pollution dispersion model

by a similar equation. We will propose explicit finite difference
technique, the forward time central space method.

We now discretize ( 2 ) by dividing the interval [0, I] into
M subintervals such that M∆x = I , the interval [0, J ] into N
subintervals such that N∆y = J , and the interval [0, T ] into
P subintervals such that P∆t = T . We can then approximate
h(xi, yj , tn) by hni,j , value of the difference approximation of
h(x, y, t) at point xi = i∆x, yj = j∆y and tn = n∆t, when
0 ≤ i ≤M , 0 ≤ j ≤ N and 0 ≤ n ≤ P , in which M, N and P
are positive integers.

3.1 Explicit finite difference technique for a two-
dimensional vertically averaged groundwater flow
model

The approximated hydraulic head,

h(x, y, t) ≈ h(i∆x, j∆y, n∆t) = hni,j .

3.1.1 Forward time centered space

We introduced the forward time centered space tech-
nique(FTCS) to a two-dimensional vertically averaged ground-
water flow model ( 2 ), we obtained that

∂h

∂t
≈
hn+1
i,j − hni,j

∆t
, (14)

∂2h

∂x2
≈
hni+1,j − 2hni,j + hni−1,j

(∆x)2
, (15)

∂2h

∂y2
≈
hni,j+1 − 2hni,j + hni,j−1

(∆y)2
. (16)

Substituting ( 14 )- ( 16 ) into ( 2 ). It is obtained that

K

(
hni+1,j − 2hni,j + hni−1,j

(∆x)2
+
hni,j+1 − 2hni,j + hni,j−1

(∆y)2

)
±W = S

(
hn+1
i,j − hni,j

∆t

)
,

(17)

for all 0 ≤ i ≤M , 0 ≤ j ≤M and 0 ≤ n ≤ P .
Rearranging ( 17 ), we have

hn+1
i,j = α(hni+1,j − 2hni,j + hni−1,j) + β(hni,j+1 − 2hni,j + hni,j−1)

+ γ + hni,j
(18)
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where α = K∆t
S(∆x)2

, β = K∆t
S(∆y)2

and γ = W∆t
S .

3.1.2 Forward time centered space technique with a cen-
tered space technique to approximate the bound-
aried solution

For i = 0, j = 0 and n = 0, the approximated fictitious
points on the boundaries, are obtained by

hn−1,0 = hn1,0 − 2BhW ∆x, (19)

hn0,−1 = hn0,1 − 2BhS∆y. (20)

Substituting ( 19 )- ( 20 ) into ( 18 ), it is obtained that

hn+1
0,0 = α(2hn1,0 − 2hn0,0 − 2BhW ∆x)

+ β(2hn0,1 − 2hn0,0 − 2BhS∆y)

+ γ + hn0,0.

(21)

For i = 0 ,1 < j < J and n = 0, the approximated fictitious
point on the boundary, is obtained by

hn−1,j = hn1,j − 2BhW ∆x. (22)

Substituting ( 22 ) into ( 18 ), it is obtained that

hn+1
0,j = α(2hn1,j − 2hn0,j − 2BhW ∆x)

+ β(hn0,j+1 − 2hn0,j + hn0,j−1)

+ γ + hn0,j .

(23)

For i = 0 ,j = J and n = 0, the approximated fictitious points
on the boundaries, are obtained by

hn−1,J = hn1,J − 2BhW ∆x, (24)

hn0,J+1 = hn0,J−1 + 2BhN∆y. (25)

Substituting ( 24 ) and ( 25 ) into ( 18 ), it is obtained that

hn+1
0,J = α(2hn1,J − 2hn0,J − 2BhW ∆x)

+ β(2BhN∆y − 2hn0,J + 2hn0,J−1)

+ γ + hn0,J .

(26)

For 1 < i < I ,j = 0 and n = 0, the approximated fictitious
point on the boundary, is obtained by

hni,−1 = hni,1 − 2BhS∆y. (27)

Substituting ( 27 ) into ( 18 ), it is obtained that

hn+1
i,0 = α(hni+1,0 − 2hni,0 + hni−1,0)

+ β(2hni,1 − 2hni,0 − 2BhS∆y)

+ γ + hni,0.

(28)

For 1 < i < I ,j = J and n = 0, the approximated fictitious
point on the boundary, is obtained by

hni,J+1 = hni,J−1 + 2BhS∆y. (29)

Substituting ( 29 ) into ( 18 ), it is obtained that

hn+1
i,J = α(hni+1,J − 2hni,J + hni−1,J)

+ β(2BhN∆y − 2hni,J + 2hni,J−1)

+ γ + hni,J .

(30)

For i = I ,j = 0 and n = 0, the approximated fictitious points
on the boundaries,

hnI+1,0 = hnI−1,0 + 2BhE∆x (31)

hnI,−1 = hnI,1 − 2BhS∆y. (32)

Substituting ( 31 ) and ( ?? ) into ( 18 ), it is obtained that

hn+1
I,0 = α(2BhE∆x− 2hnI,0 + 2hnI−1,0)

+ β(2hnI,1 − 2hnI,0 − 2BhS∆y)

+ γ + hnI,0.

(33)

For i = I ,1 < j < J and n = 0, the approximated fictitious
point on the boundary, is obtained by

hnI+1,j = hnI−1,j + 2BhE∆x. (34)

Substituting ( 34 ) into ( 18 ), it is obtained that

hn+1
I,j = α(2BhE∆x− 2hnI,j + 2hnI−1,j)

+ β(hnI,j+1 − 2hnI,j + hnI,j−1)

+ γ + hnI,j .

(35)

For i = I , j = J and n = 0, the approximated fictitious points
on the boundaries,, are obtained by

hnI+1,J = hnI−1,J + 2BhE∆x, (36)

hnI,J+1 = hnI,J−1 + 2BhN∆y. (37)

Substituting ( 36 ) and ( 37 ) into ( 18 ), it is obtained that

hn+1
I,J = α(2BhE∆x− 2hnI,J + 2hnI−1,J)

+ β(2BhN∆y − 2hnI,J + 2hnI,J−1)

+ γ + hnI,J .

(38)

3.1.3 Forward time centered space technique with a for-
ward space technique to approximate the bound-
aries solution

For i = 0 ,j = 0 and n = 0, the approximated fictitious
points on the boundaries, are obtained by

hn−1,0 = hn0,0 −BhW ∆x, (39)

hn0,−1 = hn0,0 −BhS∆y. (40)

Substituting ( 39 )- ( 40 ) into ( 18 ), it is obtained that

hn+1
0,0 = α(hn1,0 − hn0,0 −BW ∆x)

+ β(hn0,1 − hn0,0 −BS∆y)

+ γ + hn0,0.

(41)
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For i = 0 ,1 < j < J and n = 0, the approximated fictitious
point on the boundary, is obtained by

hn−1,j = hn1,j −BhW ∆x. (42)

Substituting ( 42 ) into ( 18 ), it is obtained that

hn+1
0,j = α(hn1,j − hn0,j −BhW ∆x)

+ β(hn0,j+1 − 2hn0,j + hn0,j−1)

+ γ + hn0,j .

(43)

For i = 0, j = J and t > 0, the approximated fictitious points
on the boundaries, are obtained by

hn−1,J = hn0,J −BhW ∆x, (44)

hn0,J+1 = hn0,J +BhN∆y. (45)

Substituting ( 44 ) and ( 45 ) into ( 18 ), it is obtained that

hn+1
0,J = α(hn1,J − hn0,J −BhW ∆x)

+ β(BhN∆y − hn0,J + hn0,J−1)

+ γ + hn0,J .

(46)

For 1 < i < I , j = 0 and n = 0, the approximated fictitious
point on the boundary, is obtained by

hni,−1 = hni,0 −BhS∆y. (47)

Substituting ( 47 ) into ( 18 ), it is obtained that

hn+1
i,0 = α(hni+1,0 − 2hni,0 + hni−1,0)

+ β(hni,1 − hni,0 −BhS∆y)

+ γ + hni,0.

(48)

For 1 < i < I , j = J and n = 0, the approximated fictitious
point on the boundary is obtained by

hni,J+1 = hni,J +BhN∆y. (49)

Substituting ( 49 ) into ( 18 ), it is obtained that

hn+1
i,J = α(hni+1,J − 2hni,J + hni−1,J)

+ β(BhN∆y − hni,J + hni,J−1)

+ γ + hni,J .

(50)

For i = I , j = 0 and n = 0, the approximated fictitious points
on the boundaries, are obtained by

hnI+1,0 = hnI,0 +BhE∆x, (51)

hnI,−1 = hnI,0 −BhS∆y. (52)

Substituting ( 51 ) and ( 52 ) into ( 18 ), it is obtained that

hn+1
I,0 = α(BhE∆x− hnI,0 + hnI−1,0)

+ β(hnI,1 − hnI,0 −BhS∆y)

+ γ + hnI,0.

(53)

For i = I , 1 < j < J and t > 0, the approximated fictitious
point on the boundary, is obtained by

hnI+1,j = hnI,j +BhE∆x. (54)

Substituting ( 54 ) into ( 18 ), it is obtained that

hn+1
I,j = α(BhE∆x− hnI,j + hnI−1,j)

+ β(hnI,j+1 − 2hnI,j + hnI,j−1)

+ γ + hnI,j .

(55)

For i = I , j = J and n = 0, the approximated fictitious points
on the boundaries, are obtained by

hnI+1,J = hnI,J +BhE∆x, (56)

hnI,J+1 = hnI,J +BhN∆y. (57)

Substituting ( 56 ) and ( 57 ) into ( 18 ), it is obtained that

hn+1
I,J = α(BhE∆x− hnI,J + hnI−1,J)

+ β(BhN∆y − hnI,J + hnI,J−1)

+ γ + hnI,J .

(58)

3.1.4 Forward time centered space technique with a back-
ward space technique to approximate the bound-
aries solution

For i = 0, j = 0 and n = 0, the approximated fictitious
points on the boundaries, are obtained by

hn−1,0 = hn0,0 −BhW ∆x, (59)

hn0,−1 = hn0,0 −BhS∆y. (60)

Substituting ( 59 )- ( 60 ) into ( 18 ), it is obtained that

hn+1
0,0 = α(hn1,0 − hn0,0 −BhW ∆x)

+ β(hn0,1 − hn0,0 −BhS∆y)

+ γ + hn0,0.

(61)

For i = 0, 1 < j < J and n = 0, the approximated fictitious
point on the boundary, is obtained by

hn−1,j = hn0,j −BhW ∆x. (62)

Substituting ( 62 ) into ( 18 ), it is obtained that

hn+1
0,j = α(hn1,j − hn0,j −BhW ∆x)

+ β(hn0,j+1 − 2hn0,j + hn0,j−1)

+ γ + hn0,j .

(63)

For i = 0, j = J and t > 0, the approximated fictitious points
on the boundaries are obtained by

hn−1,J = hn0,J −BhW ∆x, (64)

hn0,J+1 = hn0,J +BhN∆y. (65)
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Substituting ( 64 ) and ( 65 ) into ( 18 ), it is obtained that

hn+1
0,J = α(hn1,J − hn0,J −BhW ∆x)

+ β(BhN∆y − hn0,J + hn0,J−1)

+ γ + hn0,J .

(66)

For 1 < i < I , j = 0 and n = 0, the approximated fictitious
point on the boundary, is obtained by

hni,−1 = hni,0 −BhS∆y. (67)

Substituting ( 67 ) into ( 18 ), it is obtained that

hn+1
i,0 = α(hni+1,0 − 2hni,0 + hni−1,0)

+ β(hni,1 − hni,0 −BhS∆y)

+ γ + hni,0.

(68)

For 1 < i < I , j = J and n = 0, the approximated fictitious
point on the boundary, is obtained by

hni,J+1 = hni,J +BhN∆y. (69)

Substituting ( 69 ) into ( 18 ), it is obtained that

hn+1
i,J = α(hni+1,J − 2hni,J + hni−1,J)

+ β(BhN∆y − hni,J + hni,J−1)

+ γ + hni,J .

(70)

For i = I , j = 0 and t > 0, the approximated fictitious points
on the boundaries, are obtained by

hnI+1,0 = hnI,0 +BhE∆x, (71)

hnI,−1 = hnI,0 −BhS∆y. (72)

Substituting ( 71 ) and ( 72 ) into ( 18 ), it is obtained that

hn+1
I,0 = α(BhE∆x− hnI,0 + hnI−1,0)

+ β(hnI,1 − hnI,0 −BhS∆y)

+ γ + hnI,0.

(73)

For i = I , 1 < j < J and n = 0, the approximated fictitious
point on the boundary, is obtained by

hnI+1,1 = hnI,1 +BhE∆x. (74)

Substituting ( 74 ) into ( 18 ), it is obtained that

hn+1
I,j = α(BhE∆x− hnI,j + hnI−1,j)

+ β(hnI,j+1 − 2hnI,j + hnI,j−1)

+ γ + hnI,j .

(75)

For i = I , j = J and n = 0, the approximated fictitious points
on the boundaries, are obtained by

hnI+1,J = hnI,J +BhE∆x, (76)

hnI,J+1 = hnI,J +BhN∆y. (77)

Substituting ( 76 ) and ( 77 ) into ( 18 ), it is obtained that

hn+1
I,J = α(BhE∆x− hnI,J + hnI−1,J)

+ β(BhN∆y − hnI,J + hnI,J−1)

+ γ + hnI,J .

(78)

3.2 Finite difference technique for groundwater flow ve-
locity approximation

We introduced the centered space method to the velocity po-
tential model in two-dimension velocity field ( 7 )- ( 8 ), we
have

uni,j ≈ −
ĥni+1,j − ĥni−1,j

2∆x
, (79)

vni,j ≈ −
ĥni,j+1 − ĥni,j−1

2∆y
, (80)

where ĥ is the approximated hydraulic head, ĥni,j ≈ hni,j , for
all 0 ≤ i ≤ I , 0 ≤ j ≤ J and 0 ≤ n ≤ P .

3.3 Explicit schemes for a two-dimensional vertically av-
eraged groundwater pollution dispersion model

3.3.1 Forward time central space

Taking the forward time centered space technique in a two-
dimensional vertically averaged groundwater pollution disper-
sion model ( 9 ), we get the following discretization,

C(x, y, t) ≈ C̃(xi∆x, yj∆y, tn∆t) = Cn
i,j

∂C

∂t
≈
Cn+1

i,j − Cn
i,j

∆t
, (81)

∂C

∂x
≈
Cn

i+1,j − Cn
i−1,j

2∆x
, (82)

∂C

∂y
≈
Cn

i,j+1 − Cn
i,j−1

2∆y
, (83)

∂2C

∂x2
≈
Cn

i+1,j − 2Cn
i,j + Cn

i−1,j

(∆x)2
, (84)

∂2C

∂y2
≈
Cn

i,j+1 − 2Cn
i,j + Cn

i,j−1

(∆y)2
. (85)

Substituting ( 81 )- ( 85 ) into ( 9 ). it is obtained that

Cn+1
i,j − Cn

i,j

∆t
= −uni,j(

Cn
i+1,j − Cn

i−1,j

(2∆x)
)

− vni,j(
Cn

i,j+1 − Cn
i,j−1

(2∆y)
)

+Dx(
Cn

i+1,j − 2Cn
i,j + Cn

i−1,j

(∆x)2
)

+Dy(
Cn

i,j+1 − 2Cn
i,j + Cn

i,j−1

(∆y)2
)

+Ws.

(86)

Rearranging ( 86 ) for 0 ≤ i ≤ M , 0 ≤ j ≤ N and 0 ≤ n ≤
P , we have

Cn+1
i,j = (

λ

2
+ p)Cn

i−1,j + (1− 2p− 2q)Cn
i,j

+ (−λ
2

+ p)Cn
i+1,j + (−η

2
+ q)Cn

i,j+1

+ (
η

2
+ q)Cn

i,j−1 +Ws.

(87)
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where p =
Dx∆t

(∆x)2
, q =

Dy∆t

(∆y)2
, λni,j =

uni,j∆t

∆x
and ηni,j =

vni,j∆t

∆y
.

3.3.2 Forward time centered space technique with a cen-
tered space technique to approximate the bound-
aries solution

For i = 0, j = 0 and n = 0, the approximated fictitious
points on the boundaries, are obtained by

Cn
−1,0 = Cn

1,0 − 2BCW ∆x, (88)

Cn
0,−1 = Cn

0,1 − 2BCS∆y. (89)

Substituting ( 88 )- ( 89 ) into ( 87 ), it is obtained that

Cn+1
0,0 = (

λ

2
+ p)(−2BCW ∆x) + (1− 2p− 2q)Cn

0,0

+ (2p)Cn
1,0 + (2q)Cn

0,1 + (
η

2
+ q)(−2BCS∆y)

+Ws.

(90)

For i = 0 ,1 < j < J and n = 0, the approximated fictitious
point on the boundary, is obtained by

Cn
−1,j = Cn

1,j − 2BCW ∆x. (91)

Substituting ( 91 ) into ( 87 ), it is obtained that

Cn+1
0,j = (

λ

2
+ p)(−2BCW ∆x) + (1− 2p− 2q)Cn

0,j

+ (2p)Cn
1,j + (−η

2
+ q)Cn

0,j+1 + (
η

2
+ q)Cn

0,j−1

+Ws.

(92)

For i = 0, j = J and n = 0, the approximated fictitious points
on the boundary, are obtained by

Cn
−1,J = Cn

1,J − 2BCW ∆x, (93)

Cn
0,J+1 = Cn

0,J−1 + 2BCN∆y. (94)

Substituting ( 93 )and ( 94 ) into ( 87 ), it is obtained that

Cn+1
0,J = (

λ

2
+ p)(−2BCW ∆x) + (1− 2p− 2q)Cn

0,J

+ (2p)Cn
1,J + (−η

2
+ q)(2BCN∆y) + (2q)Cn

0,J−1

+Ws.

(95)

For 1 < i < I , j = 0 and t > 0, the approximated fictitious
point on the boundary, is obtained by

Cn
i,−1 = Cn

i,1 − 2BCS∆y. (96)

Substituting ( 96 ) into ( 87 ), it is obtained that

Cn+1
i,0 = (

λ

2
+ p)Cn

i−1,0 + (1− 2p− 2q)Cn
i,0

+ (−λ
2

+ p)Cn
i+1,0 + (2q)Cn

i,1

+ (
η

2
+ q)(−2BCS∆y) +Ws.

(97)

For 1 < i < I , j = J and n = 0, the approximated fictitious
point on the boundary, is obtained by

Cn
i,J+1 = Cn

i,J−1 + 2BCS∆y. (98)

Substituting ( 98 ) into ( 87 ), it is obtained that

Cn+1
i,j = (

λ

2
+ p)Cn

i−1,J + (1− 2p− 2q)Cn
i,J

+ (−λ
2

+ p)Cn
i+1,J + (−η

2
+ q)(2BCS∆y)

+ (2q)Cn
i,J−1 +Ws.

(99)

For i = I , j = 0 and n = 0, the approximated fictitious points
on the boundaries, are obtained by

Cn
I+1,0 = Cn

I−1,0 + 2BCE∆x (100)

Cn
I,−1 = Cn

I,1 − 2BCS∆y. (101)

Substituting ( 100 ) and ( 101 ) into ( 87 ), it is obtained that

Cn+1
I,0 = (2p)Cn

I−1,0 + (1− 2p− 2q)Cn
I,0

+ (−λ
2

+ p)(2BCE∆x) + (2q)Cn
I,1

+ (
η

2
+ q)(−2BCS∆y) +Ws.

(102)

For i = I , 1 < j < J and t > 0, the approximated fictitious
point on the boundary, is obtained by

Cn
I+1,1 = Cn

I−1,1 + 2BCE∆x. (103)

Substituting ( 103 ) into ( 87 ), it is obtained that

Cn+1
I,j = (2p)Cn

I−1,j + (1− 2p− 2q)Cn
I,j

+ (−λ
2

+ p)(2BCE∆x) + (−η
2

+ q)Cn
I,j+1

+ (
η

2
+ q)Cn

I,j−1 +Ws.

(104)

For i = I , j = J and n = 0, the approximated fictitious points
on the boundaries, are obtained by

Cn
I+1,J = Cn

I−1,J + 2BCE∆x, (105)

Cn
I,J+1 = Cn

I,J−1 + 2BCN∆y. (106)

Substituting ( 105 ) and ( 106 ) into ( 87 ), it is obtained that

Cn+1
I,J = (2p)Cn

I−1,J + (1− 2p− 2q)Cn
I,J

+ (−λ
2

+ p)(2BCE∆x) + (−η
2

+ q)(2BCN∆y)

+ (2q)Cn
I,J−1 +Ws.

(107)

3.3.3 Forward time centered space technique with a for-
ward space technique to approximate the bound-
aries solution

For i = 0, j = 0 at t > 0, the approximated fictitious points
on the boundaries, are obtained by

Cn
−1,0 = Cn

0,0 −BCW ∆x, (108)

Cn
0,−1 = Cn

0,0 −BCS∆y. (109)
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Substituting ( 108 )- ( 109 ) into ( 87 ), it is obtained that

Cn+1
0,0 = (

λ

2
+ p)(−BCW ∆x) + (1− p− q +

λ

2
− η

2
)Cn

0,0

+ (−λ
2

+ p)Cn
1,0 + (−η

2
+ q)Cn

0,1

+ (
η

2
+ q)(−BCS∆y)n +Ws.

(110)

For i = 0, 1 < j < J and t > 0, the approximated fictitious
point on the boundary, is obtained by

Cn
−1,j = Cn

0,j −BCW ∆x. (111)

Substituting ( 111 ) into ( 87 ), it is obtained that

Cn+1
0,j = (

λ

2
+ p)(−BCW ∆x) + (1− p− 2q +

λ

2
)Cn

0,j

+ (−λ
2

+ p)Cn
1,j + (−η

2
+ q)Cn

0,j+1

+ (
η

2
+ q)Cn

0,j−1 +Ws.

(112)

For i = 0, j = J and t > 0, the approximated fictitious points
on the boundaries, are obtained by

Cn
−1,J = Cn

0,J −BCW ∆x, (113)

Cn
0,J+1 = Cn

0,J +BCN∆y. (114)

Substituting ( 113 ) and ( 114 ) into ( 87 ), it is obtained that

Cn+1
0,J = (

λ

2
+ p)(−BCW ∆x) + (1− p− q +

λ

2
− η

2
)Cn

0,J

+ (−λ
2

+ p)Cn
1,J + (−η

2
+ q)(BCN∆y)

+ (
η

2
+ q)Cn

0,J−1 +Ws

(115)

For 1 < i < I , j = 0 and t > 0, the approximated fictitious
point on the boundary, is obtained by

Cn
i,−1 = Cn

i,0 −BCS∆y. (116)

Substituting ( 116 ) into ( 87 ), it is obtained that

Cn+1
i,0 = (

λ

2
+ p)Cn

i−1,0 + (1− 2p− q +
η

2
)Cn

i,0

+ (−λ
2

+ p)Cn
i+1,0 + (−g

2
+ q)Cn

i,1

+ (
η

2
+ q)(−BCS∆y) +Ws.

(117)

For 1 < i < I , j = J and n = 0, the approximated fictitious
point on the boundary, is obtained by

Cn
i,J+1 = Cn

i,J +BCS∆y. (118)

Substituting ( 118 ) into ( 87 ), it is obtained that

Cn+1
i,J = (

λ

2
+ p)Cn

i−1,J + (1− 2p− q − η

2
)Cn

i,J

+ (−λ
2

+ p)Cn
i+1,J + (−η

2
+ q)(BCS∆y)

+ (
η

2
+ q)Cn

i,J−1 +Ws.

(119)

For i = I , j = 0 and t > 0, the approximated fictitious points
on the boundaries, are obtained by

Cn
I+1,0 = Cn

I,0 +BCE∆x, (120)

Cn
I,−1 = Cn

I,0 −BCS∆y. (121)

Substituting ( 120 ) and ( 121 ) into ( 87 ), it is obtained that

Cn+1
I,0 = (

λ

2
+ p)Cn

I−1,0 + (1− p− q − λ

2
+
η

2
)Cn

I,0

+ (−λ
2

+ p)(BCE∆x) + (−η
2

+ q)Cn
I,1

+ (
η

2
+ q)(−BCS∆y) +Ws.

(122)

For i = I , 1 < j < J and n = 0, the approximated fictitious
point on the boundary, is obtained by

Cn
I+1,j = Cn

I,j +BCE∆x. (123)

Substituting ( 123 ) into ( 87 ), it is obtained that

Cn+1
I,j = (

λ

2
+ p)Cn

I−1,j + (1− p− 2q − λ

2
)Cn

I,j

+ (−λ
2

+ p)(BCE∆x) + (−η
2

+ q)Cn
I,j+1

+ (
η

2
+ q)Cn

I,j−1 +Ws.

(124)

For i = I , j = J and n = 0, the approximated fictitious points
on the boundaries, are obtained by

Cn
I+1,J = Cn

I,J +BCE∆x, (125)

Cn
I,J+1 = Cn

I,J +BCN∆y. (126)

Substituting ( 125 ) and ( 126 ) into ( 87 ), it is obtained that

Cn+1
I,J = (

λ

2
+ p)Cn

I−1,J + (1− p− q − λ

2
− η

2
)Cn

I,J

+ (−λ
2

+ p)(BCE∆x) + (−η
2

+ q)(BCN∆y)

+ (
η

2
+ q)Cn

I,J−1 +Ws.

(127)

3.3.4 Forward time centered space technique with a back-
ward space technique to approximate the bound-
aries solution

For i = 0, j = 0 and t > 0, the approximated fictitious
points on the boundaries, are obtained by

Cn
−1,0 = Cn

0,0 −BCW ∆x, (128)

Cn
0,−1 = Cn

0,0 −BCS∆y. (129)

Substituting ( 128 ) and ( 129 ) into ( 87 ), it is obtained that

Cn+1
0,0 = (

λ

2
+ p)(−BCW ∆x) + (1− p− q +

λ

2
− g

2
)Cn

0,0

+ (−λ
2

+ p)Cn
1,0 + (−η

2
+ q)Cn

0,1

+ (
η

2
+ q)(−BCS∆y)n +Ws.

(130)



160
Numerical Simulation of a Two-Dimensional Vertically Averaged Groundwater

Quality Assessment in Homogeneous Aquifer Using Explicit Finite Difference Techniques

For i = 0, 1 < j < J and n = 0, the approximated fictitious
point on the boundary, is obtained by

Cn
−1,j = Cn

0,j −BCW ∆x. (131)

Substituting ( 131 ) into ( 87 ), it is obtained that

Cn+1
0,j = (

λ

2
+ p)(−BCW ∆x) + (1− p− 2q +

λ

2
)Cn

0,j

+ (−λ
2

+ p)Cn
1,j + (−η

2
+ q)Cn

0,j+1

+ (
η

2
+ q)Cn

0,j−1 +Ws.

(132)

For i = 0, j = J and t > 0, the approximated fictitious points
on the boundaries, are obtained by

Cn
−1,J = Cn

0,J −BCW ∆x, (133)

Cn
0,J+1 = Cn

0,J +BCN∆y. (134)

Substituting ( 133 ) and ( 134 ) into ( 87 ), it is obtained that

Cn+1
0,J = (

λ

2
+ p)(−BCW ∆x) + (1− p− q +

λ

2
− η

2
)Cn

0,J

+ (−λ
2

+ p)Cn
1,J + (−η

2
+ q)(BCN∆y)

+ (
η

2
+ q)Cn

0,J−1 +Ws.

(135)

For 1 < i < I , j = 0 and n = 0, the approximated fictitious
point on the boundary, is obtained by

Cn
i,−1 = Cn

i,0 −BCS∆y. (136)

Substituting ( 136 ) into ( 87 ), it is obtained that

Cn+1
i,0 = (

λ

2
+ p)Cn

i−1,0 + (1− 2p− q +
η

2
)Cn

i,0

+ (−λ
2

+ p)Cn
i+1,0 + (−η

2
+ q)Cn

i,1

+ (
η

2
+ q)(−BCS∆y) +Ws.

(137)

For 1 < i < I , j = J and n = 0, the approximated fictitious
point on the boundary, is obtained by

Cn
i,J+1 = Cn

i,J +BCS∆y. (138)

Substituting ( 138 ) into ( 87 ), it is obtained that

Cn+1
i,J = (

λ

2
+ p)Cn

i−1,J + (1− 2p− q − η

2
)Cn

i,J

+ (−λ
2

+ p)Cn
i+1,J + (−η

2
+ q)(BCS∆y)

+ (
η

2
+ q)Cn

i,J−1 +Ws.

(139)

For i = I , j = 0 and n = 0, the approximated fictitious points
on the boundaries,are obtained by

Cn
I+1,j = Cn

I,j +BCE∆x. (140)

Cn
I,−1 = Cn

I,0 −BCS∆y. (141)

Substituting ( 140 ) and ( 141 ) into ( 87 ), it is obtained that

Cn+1
I,0 = (

λ

2
+ p)Cn

I−1,0 + (1− p− q − λ

2
− η

2
)Cn

I,0

+ (−λ
2

+ p)(BCE∆x) + (−η
2

+ q)Cn
I,1

+ (
η

2
+ q)(−BCS∆y) +Ws.

(142)

For i = I , 0 < j < J and n = 0, the approximated fictitious
point on the boundary, is obtained by

Cn
i,J+1 = Cn

i,J +BCE∆y. (143)

Substituting ( 143 ) into ( 87 ), it is obtained that

Cn+1
I,j = (

λ

2
+ p)Cn

I−1,j + (1− p− 2q − λ

2
)Cn

I,j

+ (−λ
2

+ p)(BCE∆x) + (−η
2

+ q)Cn
I,j+1

+ (
η

2
+ q)Cn

I,j−1 +Ws.

(144)

For i = I , j = J and n = 0, the approximated fictitious points
on the boundary, are obtained by

Cn
I+1,0 = Cn

I,0 +BCE∆x, (145)

Cn
I,J+1 = Cn

I,0 +BCS∆y. (146)

Substituting ( 145 ) and ( 146 ) into ( 87 ), it is obtained that

Cn+1
I,J = (

λ

2
+ p)Cn

I−1,J + (1− p− q − λ

2
− g

2
)Cn

I,J

+ (−λ
2

+ p)(BCE∆x) + (−η
2

+ q)(BCN∆y)

+ (
η

2
+ q)Cn

I,J−1 +Ws.

(147)

4 Numerical simulations
The demonstration analyzed the behavior of groundwater

flow, hydraulic head, vector velocity and pollution dispersion
of groundwater. The experimented area has homogeneous
aquifer.

4.1 Simulation 1: Groundwater pollution measurement
in an area close to 3 land fill sites

The considered area is surrounded by a landfill site as shown
in Fig. 4. The area has dimension, 10 km. × 10 km. The phys-
ical parameters are the rate of change of hydraulic head along
the north boundary, the west boundary, the south boundary and
the east boundary is -5 m., -5 m., -5 m. and 5 m. respectively.
The potential hydraulic head is 10 m. The hydraulic conductiv-
ity is 15 m./day and the storage capacity is 100. The simulation
parameters are shown in Table 1.

The grid spacing is taked by ∆x = ∆y = 50 m and ∆t = 1
day. The stationary simulation time is 10 years. In this simu-
lation, the forward time centered space with a centered space
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Figure 4. An area close to 3 land fill sites

Table 1. Parameters of a two-dimensional vertically averaged groundwater
flow model in simulation 1

K S W h(x,y,0) BhW BhE BhS BhN
15 100 0 10 -5 -5 -5 5

technique on the boundaries solution ( 19 )- ( 38 ), a forward
space technique on the boundaries solution ( 39 )- ( 58 ) and
a backward space technique on the boundaries solution ( 59 )-
( 78 ).

We get the approximated hydraulic head by using 3 different
techniques that are shown in Tables 3 and Fig. 5. Next, the
groundwater flow velocity is also simulated. The groundwater
velocity is approximated by using ( 79 )- ( 80 ). The approxi-
mated flow velocity is shown in Tables 4, 5 and Fig. 6. Finally,
the approximated groundwater flow velocity will be input into
the groundwater pollution dispersion model as field data. The
rate of change of groundwater pollutant matter along the north
boundary, the west boundary, the south boundary and the east
boundary is -0.05 m., -0.05 m., -0.05 m. and 0.05 m. respec-
tively. The potential groundwater pollutant is 0.01 m., The
diffusion coefficient of groundwater pollution in x-, y-axis is
1(m.2/day), 1(m.2/day) respectively. We can summarize their
groundwater pollutant matter parameters as shown in Table 2
by using the forward time centered space with a centered space
technique on the boundaries solution ( 88 )- ( 107 ), a forward
space technique on the boundaries solution ( 108 )- ( 127 )
and a backward space technique on the boundaries solution (
128 )- ( 147 ). We get the approximated groundwater pollutant
concentration as shown in Table 6 and Fig. 7.

4.2 Simulation 2: Groundwater pollution measurement
in an area close to 3 land fill sites and pumping term

We consider an area in simulation 1 that have system of wa-
ter pumping, sink is −50 m/day and 2 sources are 25 m/day
as shown in Fig. 8. We can summarize their groundwater pol-
lutant matter parameters as show in Table 7. We get the approx-
imated hydraulic head by using centered space techniques are

Table 2. Parameters of a two-dimensional vertically averaged pollution dis-
persion model in simulation 1

Dx Dy Ws C(x,y,0) BCW BCE BCS BCN
1 1 0 0.01 -0.05 -0.05 -0.05 0.05

Table 3. Hydraulic head at 10 years by using FTCS with CS, FC and BC

h(i,j,n)
CS y \ x 0 2 4 6 8 10

0 36.91 29.14 24.93 22.05 17.84 10.06
1 32.51 24.74 20.53 17.65 13.44 5.67
2 29.29 21.51 17.30 14.42 10.21 2.44
3 27.12 19.35 15.14 12.26 8.04 0.27
4 25.89 18.12 13.91 11.03 6.81 -0.96
5 25.50 17.73 13.51 10.63 6.42 -1.36
6 25.89 18.12 13.91 11.03 6.81 -0.96
7 27.12 19.35 15.14 12.26 8.04 0.27
8 29.29 21.51 17.30 14.42 10.21 2.44
9 32.51 24.74 20.53 17.65 13.44 5.67

10 36.91 29.14 24.93 22.05 17.84 10.06
FS y \ x 0 2 4 6 8 10

0 34.93 27.67 23.81 21.19 17.31 10.04
1 30.81 23.55 19.69 17.07 13.19 5.92
2 27.81 20.56 16.69 14.07 10.19 2.91
3 25.82 18.56 14.69 12.06 8.18 0.91
4 24.69 17.43 13.56 10.93 7.04 -0.23
5 24.33 17.07 13.19 10.56 6.67 -0.60
6 24.69 17.43 13.56 10.92 7.03 -0.25
7 25.82 18.56 14.69 12.05 8.15 0.87
8 27.81 20.55 16.69 14.05 10.14 2.83
9 30.81 23.55 19.69 17.05 13.12 5.77

10 34.93 27.67 23.81 21.17 17.23 9.74
BS y \ x 0 2 4 6 8 10

0 35.10 27.83 23.92 21.26 17.34 10.05
1 30.98 23.70 19.80 17.13 13.21 5.92
2 27.98 20.70 16.79 14.12 10.20 2.91
3 25.97 18.69 14.78 12.10 8.18 0.89
4 24.84 17.55 13.64 10.96 7.04 -0.26
5 24.47 17.19 13.27 10.59 6.66 -0.63
6 24.84 17.55 13.64 10.96 7.02 -0.27
7 25.97 18.69 14.78 12.09 8.15 0.85
8 27.98 20.69 16.79 14.10 10.15 2.82
9 30.98 23.70 19.80 17.11 13.14 5.77

10 35.10 27.83 23.92 21.23 17.25 9.74

Table 4. Groundwater flow velocity(m/day) in x-direction by using FTCS with
CS, FC and BC

u(i,j,n)
CS y \ x 0 2 4 6 8 10

0 0.16 0.16 0.16 0.16 0.16 0.00
1 0.14 0.14 0.14 0.14 0.14 0.00
2 0.10 0.10 0.10 0.10 0.10 0.00
3 0.06 0.06 0.06 0.06 0.06 0.00
4 0.03 0.03 0.03 0.03 0.03 0.00
5 0.00 0.00 0.00 0.00 0.00 0.00
6 -0.03 -0.03 -0.03 -0.03 -0.03 0.00
7 -0.06 -0.06 -0.06 -0.06 -0.06 0.00
8 -0.10 -0.10 -0.10 -0.10 -0.10 0.00
9 -0.14 -0.14 -0.14 -0.14 -0.14 0.00

10 -0.16 -0.16 -0.16 -0.16 -0.16 0.00
FS y \ x 0 2 4 6 8 10

0 0.66 0.66 0.66 0.66 0.66 0.00
1 0.49 0.49 0.49 0.49 0.49 0.00
2 0.33 0.33 0.34 0.34 0.34 0.00
3 0.20 0.20 0.20 0.20 0.20 0.00
4 0.08 0.08 0.08 0.08 0.08 0.00
5 -0.03 -0.03 -0.03 -0.03 -0.03 0.00
6 -0.14 -0.14 -0.14 -0.14 -0.14 0.00
7 -0.26 -0.26 -0.26 -0.26 -0.26 0.00
8 -0.41 -0.41 -0.41 -0.41 -0.41 0.00
9 -0.57 -0.57 -0.57 -0.57 -0.57 0.00

10 -0.66 -0.66 -0.66 -0.66 -0.66 0.00
BS y \ x 0 2 4 6 8 10

0 0.66 0.66 0.66 0.66 0.66 0.00
1 0.57 0.58 0.58 0.58 0.58 0.58
2 0.41 0.41 0.41 0.41 0.41 0.41
3 0.27 0.27 0.27 0.27 0.27 0.27
4 0.14 0.14 0.14 0.14 0.14 0.14
5 0.03 0.03 0.03 0.03 0.03 0.03
6 -0.08 -0.08 -0.08 -0.08 -0.08 -0.08
7 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20
8 -0.34 -0.34 -0.34 -0.34 -0.33 -0.33
9 -0.49 -0.49 -0.49 -0.49 -0.49 -0.48

10 -0.66 -0.66 -0.66 -0.66 -0.66 -0.63
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Table 5. Groundwater flow velocity(m/day) in y-direction by using FTCS with
CS, FC and BC

v(i,j,n)
CS y \ x 0 2 4 6 8 10

0 0.00 0.00 0.00 0.00 0.00 0.00
1 0.17 0.11 0.06 0.06 0.11 0.17
2 0.17 0.11 0.06 0.06 0.11 0.17
3 0.17 0.11 0.06 0.06 0.11 0.17
4 0.17 0.11 0.06 0.06 0.11 0.17
5 0.17 0.11 0.06 0.06 0.11 0.17
6 0.17 0.11 0.06 0.06 0.11 0.17
7 0.17 0.11 0.06 0.06 0.11 0.17
8 0.17 0.11 0.06 0.06 0.11 0.17
9 0.17 0.11 0.06 0.06 0.11 0.17

10 0.00 0.00 0.00 0.00 0.00 0.00
FS y \ x 0 2 4 6 8 10

0 0.00 0.00 0.00 0.00 0.00 0.00
1 0.66 0.36 0.20 0.23 0.43 0.67
2 0.66 0.36 0.20 0.23 0.43 0.67
3 0.66 0.36 0.20 0.23 0.43 0.67
4 0.66 0.36 0.20 0.23 0.43 0.67
5 0.66 0.36 0.20 0.23 0.43 0.67
6 0.66 0.36 0.20 0.23 0.43 0.67
7 0.66 0.36 0.20 0.23 0.43 0.67
8 0.66 0.36 0.20 0.23 0.43 0.67
9 0.66 0.36 0.20 0.23 0.44 0.67

10 0.00 0.00 0.00 0.00 0.00 0.00
BS y \ x 0 2 4 6 8 10

0 0.00 0.00 0.00 0.00 0.00 0.00
1 0.67 0.43 0.23 0.21 0.37 0.67
2 0.67 0.43 0.23 0.21 0.37 0.67
3 0.67 0.43 0.23 0.21 0.37 0.67
4 0.67 0.43 0.23 0.21 0.37 0.67
5 0.67 0.43 0.23 0.21 0.37 0.67
6 0.67 0.43 0.23 0.21 0.37 0.67
7 0.67 0.43 0.23 0.21 0.37 0.67
8 0.67 0.43 0.23 0.21 0.37 0.67
9 0.67 0.43 0.23 0.21 0.37 0.67

10 0.00 0.00 0.00 0.00 0.00 0.00

Table 6. Approximated groundwater pollutant(kg/m3) at 10 years by using
FTCS with CS, FC and BC

C(i,j,n)
CS y \ x 0 2 4 6 8 10

0 1.07 0.97 0.86 0.76 0.65 0.55
1 1.02 0.92 0.81 0.71 0.61 0.51
2 0.99 0.88 0.78 0.67 0.57 0.47
3 0.96 0.86 0.75 0.65 0.54 0.44
4 0.94 0.84 0.74 0.63 0.53 0.43
5 0.94 0.84 0.73 0.63 0.52 0.42
6 0.94 0.84 0.74 0.63 0.53 0.43
7 0.96 0.86 0.75 0.65 0.54 0.44
8 0.99 0.88 0.78 0.67 0.57 0.47
9 1.02 0.92 0.81 0.71 0.61 0.51

10 1.07 0.97 0.86 0.75 0.65 0.55
FS y \ x 0 2 4 6 8 10

0 1.71 1.60 1.48 1.36 1.25 1.15
1 1.66 1.55 1.43 1.32 1.21 1.11
2 1.63 1.52 1.40 1.28 1.17 1.07
3 1.60 1.49 1.37 1.25 1.15 1.05
4 1.58 1.47 1.35 1.24 1.13 1.03
5 1.58 1.47 1.35 1.23 1.12 1.02
6 1.59 1.47 1.35 1.24 1.13 1.03
7 1.60 1.49 1.37 1.26 1.15 1.05
8 1.63 1.52 1.40 1.29 1.18 1.08
9 1.67 1.56 1.44 1.32 1.22 1.11

10 1.71 1.60 1.49 1.37 1.26 1.15
BS y \ x 0 2 4 6 8 10

0 1.75 1.64 1.52 1.40 1.28 1.18
1 1.71 1.59 1.47 1.35 1.24 1.14
2 1.67 1.56 1.43 1.31 1.20 1.10
3 1.64 1.53 1.40 1.28 1.17 1.07
4 1.62 1.51 1.38 1.26 1.15 1.05
5 1.61 1.50 1.38 1.26 1.15 1.04
6 1.62 1.50 1.38 1.26 1.15 1.05
7 1.63 1.52 1.40 1.28 1.17 1.06
8 1.66 1.55 1.42 1.30 1.19 1.09
9 1.69 1.58 1.46 1.34 1.23 1.13

10 1.74 1.63 1.50 1.38 1.27 1.17

Figure 5. Surface of hydraulic head at 10 years by using FTCS with CS, FS
and BS

Figure 6. Groundwater flow velocity at 10 years by using FTCS with CS, FS
and BS

Figure 7. Surface of groundwater pollutant at 10 years by using FTCS with
CS, FS and BS
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Figure 8. An area close to 3 land fill sites

Table 7. Parameters of a two-dimensional vertically averaged groundwater
flow model in simulation 2

K S W W h(x,y,0) BhW BhE BhS BhN
(sink) (source)

15 100 -50 25 10 -5 -5 -5 5

shown in Table 9 and Fig. 9. Next, The groundwater velocity as
shown in Table 10, 11 and Fig. 10. Finally, the approximated
groundwater flow velocity will be input into the groundwater
pollution dispersion model as field data. The system of water
pumping, We can summarize their groundwater pollutant pol-
lutant matter parameters as show in Table 8. The approximated
groundwater pollutant as shown in Table 12 and Fig. 11.

Figure 9. Surface of hydraulic head at 10 years by using FTCS with CS in
simulation 2

5 Discussion
In simulation 1, the computed hydraulic head moves from

the higher hydraulic head to the lower hydraulic head when the

Table 8. Parameters of a two-dimensional vertically averaged pollution dis-
persion model in simulation 2

Dx Dy Ws Ws C(x,y,0) BCW BCE BCS BCN
(sink) (source)

1 1 -5 2.5 0.01 -0.05 -0.05 -0.05 0.05

Table 9. Hydraulic head at 10 years by using FTCS with CS in simulation 2

h(i,j,n)
CS y \ x 0 2 4 6 8 10

0 35.65 28.01 23.40 20.73 17.52 10.59
1 31.74 24.01 19.02 16.35 13.52 6.68
2 29.26 21.40 15.29 12.62 10.90 4.19
3 28.10 20.43 11.73 9.05 9.92 3.02
4 27.93 21.95 7.60 4.92 11.44 2.84
5 28.06 26.71 3.79 1.11 16.19 2.96
6 27.93 21.95 7.60 4.92 11.42 2.82
7 28.10 20.43 11.73 9.04 9.89 2.98
8 29.26 21.40 15.29 12.60 10.85 4.11
9 31.74 24.01 19.02 16.33 13.45 6.52

10 35.65 28.01 23.40 20.71 17.44 10.27

Table 10. Groundwater flow velocity(m/day) in x-direction by using FTCS
with CS in simulation 2

u(i,j,n)
CS y \ x 0 2 4 6 8 10

0 0.64 0.65 0.69 0.69 0.65 0.00
1 0.53 0.55 0.63 0.63 0.55 0.53
2 0.32 0.34 0.54 0.54 0.34 0.32
3 0.13 0.07 0.54 0.54 0.08 0.13
4 0.00 -0.35 0.65 0.65 -0.35 0.00
5 -0.01 -0.78 0.46 0.46 -0.78 -0.01
6 0. 0.65 -0.68 -0.68 0.65 0.03
7 -0.05 0.11 -0.59 -0.58 0.11 -0.05
8 -0.22 -0.22 -0.53 -0.53 -0.22 -0.21
9 -0.42 -0.45 -0.58 -0.58 -0.44 -0.41

10 -0.64 -0.65 -0.69 -0.69 -0.65 -0.61

Table 11. Groundwater flow velocity(m/day) in y-direction by using FTCS
with CS in simulation 2

v(i,j,n)
CS y \ x 0 2 4 6 8 10

0 0.00 0.00 0.00 0.00 0.00 0.00
1 0.68 0.49 0.31 0.15 0.29 0.65
2 0.68 0.52 0.41 0.08 0.24 0.65
3 0.66 0.53 0.67 -0.14 0.16 0.67
4 0.61 0.33 1.37 -0.86 0.23 0.72
5 0.57 -0.56 2.45 -2.89 2.98 0.77
6 0.61 0.33 1.37 -0.86 0.23 0.72
7 0.66 0.53 0.67 -0.14 0.16 0.67
8 0.68 0.52 0.41 0.08 0.24 0.66
9 0.68 0.49 0.31 0.15 0.30 0.66
10 0.00 0.00 0.00 0.00 0.00 0.00

Table 12. Approximated groundwater pollutant(kg/m3) at 10 years by using
FTCS with CS in simulation 2

C(i,j,n)
CS y \ x 0 2 4 6 8 10
0 2.10 1.99 1.86 1.73 1.61 1.51
1 2.07 1.96 1.83 1.69 1.58 1.48
2 2.05 1.95 1.81 1.67 1.56 1.46
3 2.05 1.96 1.81 1.66 1.58 1.47
4 2.06 2.02 1.83 1.66 1.64 1.49
5 2.07 2.11 1.84 1.66 1.75 1.50
6 2.07 2.03 1.84 1.67 1.65 1.49
7 2.06 1.97 1.82 1.67 1.59 1.47
8 2.05 1.95 1.81 1.68 1.57 1.47
9 2.07 1.96 1.83 1.70 1.58 1.48
10 2.10 1.99 1.86 1.73 1.62 1.51
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Figure 10. Groundwater flow velocity at 10 years by using FTCS with CS in
simulation 2

Figure 11. Surface of groundwater pollutant at 10 years by using FTCS with
CS in simulation 2

time has been passed for 10 years. The velocity vector gives the
fields groundwater flow directions in the considered area. The
groundwater pollutant along the landfill has been flowing into
the considered area. The groundwater pollutant in the area will
be growing up as well. The pollutant concentration in around
landfill vicinity will be higher than another area. This means
that the groundwater pollutant is introduced by groundwater
flow and its hydraulic head. The pollutant will be flowing out
through the east boundary.

In simulation 2, the system of water pumping and injection
are considered. There are 1 water pumping well and 2 water
injection well. The water injection well can be maintained the
hydraulic head level entire the consider area. The water pump-
ing well will be reduce the hydraulic head around them along
10 years. This means that the water injection well system can
be used to reserve groundwater levels as nature groundwater re-
sources. The groundwater pollutant around the injection wells
will be increased due to the groundwater flow velocity. On the
other hand, the groundwater pollutant around the pumping well
will be reduced due to the removal mechanism. These means

that the groundwater quality can be induced by the pumping or
injecting system.

6 Conclusion
A two-dimensional groundwater flow model that gives the

hydraulic head level is introduced. The techniques of the ini-
tial condition and boundary conditions of the groundwater flow
model are proposed. The groundwater flow velocity model is
also introduced. It gives groundwater flow directions. The for-
ward time centered technique with the centered in space, the
forward in space and the backward in space with all bound-
aries are used to obtain the approximated hydraulic head, the
flow velocity in x- and y- directions, respectively.

The approximated groundwater flow velocity are used to in-
put into a two-dimensional vertically averaged groundwater
pollution dispersion model. The groundwater pollution due to
a landfill around a considered area is focused. The techniques
of the initial condition and boundary condition setting is pro-
posed. The forward time centered space technique with the
centered in space, the forward in space and the backward in
space with all boundaries are used to approximate the ground-
water pollutant concentration. The proposed explicit forward
time centered spaced finite difference techniques to the ground-
water flow model the velocity potential model and the ground-
water pollution dispersion model give good agreement approx-
imated solutions. They are economical finite difference tech-
niques due to our proposed techniques are explicit methods. It
is not produced any large system of linear equations. In both
simulations, the hydraulic head is depends on the hydraulic
head level on their boundaries. The groundwater flow veloc-
ity is also induced by the hydraulic head. The water pumping
and injecting system a can be change the hydraulic head and its
groundwater flow direction. The groundwater pollutant con-
centration can be induced by the water pumping and injecting
system.

Furthermore, If a landfill project is planned to construct in
an area the environmental impact assessment should be con-
sidered to the simulated groundwater quality assessment in the
future as well.
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