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Abstract  This paper aims at the heat transfer 
phenomenon and the effect of magnetic field on the 
second-grade fluid in a vertical oscillating cylinder. By 
applying a perpendicular magnetic field, the fluid gets 
magnetized. Fractional MHD flow was modeled with 
Caputo-Fabrizio non-integer derivative approach. Exact 
solution of the governing equations was obtained by 
Laplace and finite Hankel transforms. Mathematical 
computations and graphical plots were used to investigate 
the quantitative effects of emerging dimensionless physical 
parameters on the second-grade fluid flow, such as 
magnetic field and Prandtl number. 
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1. Introduction
Nowadays BFD (biomagnetic fluid dynamics) and MHD 

(magneto hydrodynamics) are gaining significant attention 
in fractional-order electromagnetism, bio-engineering and 
neurons modeling in biology. Heat transfer has a major 
impact on the non-Newtonian flow problems in industry 
and engineering. 

In the analytical study of Nehad and Ilyas [1], fractional 
parameter enhances the fluid velocity in the vertical 
oscillating plate. Das et al [2] applied Runge-Kutta sixth 
order method to the stretching heat model. The results 
conclude that thermal radiation significantly increases the 
boundary layer velocity and temperature. Rehman et al. [3] 
used a homotopy analysis method to find the Erying Powell 
fluid stagnation point inside the vertical cylinder. Keller 

box scheme was employed by Prasad et al. [4] to 
numerically simulate the incompressible second-grade 
fluid. Numerical results show that the heat transfer rate and 
velocity gradient decelerates with streamwise coordinate. 
Alao et al. [5] solved the viscous dissipation model by 
spectral relaxation method. It was shown that thermal 
radiation rise resulted in the cooling plate. Fourth-grade 
thin-film flow was analytically studied by using Adomian 
decomposition method and Homotopy asymptotic method 
by Gul et al. [6]. Graphical results were compared and 
found in good agreement with both of the methods. 
Visco-elastic fluid flow inside the circular cylinder was 
investigated by Choudhury and Deka [7]. Meksyn 
application model of steepest descent method was applied, 
where it was found that Nusselt number and visco-elastic 
absolute value reduced the shearing stress. Hayat et al. [8] 
discussed the heat absorption and heterogeneous reactions 
due to a rotating disk for the second-grade fluid. 
Appropriate initial guesses were made to assure the 
solution convergence. Computed results depicted that 
visco-elastic parameter and Schmidt number were the 
increasing functions of concentration profile. Shear stress 
and velocity profile were evaluated by using the fractional 
derivative approach in Raza et al. [9] model. The hybrid 
technique involves semi-analytical fractional-order 
solutions condensed to the ordinary form. Non-Fourier heat 
flux and thermal conductivity for temperature-dependent 
fluid were numerically investigated by Hayat et al. [10]. 
HAM solution showed that the velocity profile accelerated 
with visco-elastic and curvature parameter. Moreover, 
temperature decayed with increasing thermal stratification 
and Prandtl number. Blood and fluid flow problems 
without singularity in the fractional domain were 
analytically studied by Uddin et al. [11], [12], [13]& [14]. 
Temperature distribution for solid oxide fuel cell studied 
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by Guk et al. [15] was subjected to various flow parameters 
impact. Open circuit voltage conditions and direct 
hydrogen oxidation was the most significant contributor 
for the average increment in the cell’s temperature. Zhang 
et al. [16] experimentally investigated lateral smoke 
extraction. Thermal behaviour across longitudinal 
ventilation was also studied. Experimental results 
displayed that the smoke temperature reduced 
exponentially along with the tunnel ceiling. Curved 
sidewall effect on flame characteristic and ceiling was 
experimentally studied by Liang et al. [17]. Inside the 
tunnel ceiling temperature distribution was found 
asymmetrical near the fire source region. Shojaei et al. [18] 
analytically examined the Soret and Dufour effects along 
stretching cylinder. Both were in negative correlation with 
heat and mass transfer rate. Xu et al. [19] used a fuel cell 
device for the direct conversion of chemical energy into 
electricity. Two-dimensional control orient model of the 
differential equation was established for the fuel cell device. 
Thermoelectric characteristics were reflected by the 
simulated results and especially the temperature 
distribution across the device.  

In this paper heat transfer effect due to natural 
convection in a vertically oscillating cylinder is focused 
upon. Previously, analytic solutions were expressed in 
terms of generalized functions, which were inadequate for 
simulations. Whereas, in the present research, partial 
differential equations have been made free from the 
singular kernel, which makes it more suitable for numerical 
simulations. Computer software Mathematica was used for 
simulations. Discussion and graphical illustrations have 
been made in the end. 

2. Mathematical Model 
Present taking the unusual Boussinesq approximation, 

the unsteady MHD second grade thermal fluid flow is 
governed by the following set of partial differential 
equations  
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The Initial and boundary conditions are 
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Where in Eq.(1) & (2) u(r, t) is the fluid velocity, T(r, t) 
is fluid temperature, ν  is the fluid kinematic viscosity, 

3α  is the second grade fluid parameter, ρ  is the fluid 

density, Tβ  is the fluid volumetric coefficient of thermal 
expansion, g is the gravitational acceleration, Cp is the fluid 
heat capacity at constant pressure and k is the fluid thermal 
conductivity.  

2.1. Dimensionless Time Fractional Model 

A Governing momentum and energy equations are 
non-dimensionalised by introducing dimensionless 
variables. After dropping * notations we have 
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Replacing the classical time partial derivative with the 
Caputo-Fabrizio time fractional derivative of non-integer 
order ]1,0[∈α  in eqs (5) and (6) respectively, one obtains: 
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2.1.1. Temperature Field 
Temperature of second grade fluid can be obtained by 

taking Laplace and finite Hankel transforms of the energy 
equation in Eq. (10) along with initial and boundary 
conditions in Eq. (7)2 & (8)2, and we obtain the final 
analytical form of the temperature profile in the local as 
well as fractional model 10 ≤<α ,  
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Where 1
2

2
22

1 /,Pr brbrrb nnn αα =−+=  J0 and J1 are the 
bessel functions of zero and first order with first kind and rn, 
n = 1, 2, 3, … are the positive roots of J0(x) = 0. 

2.1.2. Velocity Field 
The Velocity profile of second grade fluid under the 

action of external applied magnetic field and heat transfer 
in the fractional model can be obtained by Eq. (9) along 
with initial and boundary conditions stated in Eq. (7)1 & 
(8)1. After taking Laplace and finite Hankel transforms on 
these equations we have, 
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2.2. Numerical Results and Discussion 

By using Eq. (11) & (12), influence of flow parameters 
like Prandtl number and external magnetic field on 
temperature and velocity profile is investigated. Fig (1) 
shows the flow geometry. For computer-based simulations 
other fixed flow parameters are 1and5.04 =α  (second 
grade fluid parameter), 6and4,2,1Pr =  (Prandtl number), 

1=Gr  (Grashof number), 5and4,3,2Haand
4

==
Piω . 

 

Figure 1.  Fluid flow geometry inside oscillating walls 

 

Figure 2.  Temperature profile T(r, t) against r 
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Figure 3.  Velocity profile u(r, t) against r 

In Fig. (2), the effect of Prandtl number on temperature 
profile for fractional second grade non-Newtonian fluid is 
shown. It is observed that heat transfer from oscillating 
cylinder towards the fluid is significant and fluid gets warm 
for small Pr and begins to cool by increasing values due to 
thickening of the thermal boundary layer. 

Fluid flow was exposed to the external magnetic field at 
different strengths in Fig. (3), 5and4,3,2Ha =  against r. 
Fluid velocity decreased with the magnetic field. 

3. Conclusions 
The article concluded by mentioning the following main 

points that:  
1. Thickening of the thermal boundary layer decreases 

the fluid temperature.  
2. Fluid flow can be controlled by applying sufficiently 

strong magnetic field.  

It is expected that the present study can inspire other 
researchers as well. The study can be extended to the 
stretching flow models in the food process, blood flow, 
paper production and polymeric solutions. 
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