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Abstract  The transverse spherical impact on an 
elastic-plastic beam is formulated and investigated herein. 
Both semi-analytical procedure and finite element (FEM) 
solution are elaborated. The semi analytical solution 
combines a finite difference method with the Hertz contact 
theory. The transient response of impact beams is 
computed by considering the loaded and unloaded phases. 
The contact force calculation is based on the model 
proposed by Stronge. To validate our semi-analytical 
model, a 3D finite element model has been developed. The 
comparison between the predictions from the presented 
semi-analytical and those from the 3D finite element 
models shows that the semi analytical model achieves very 
accurate predictions at a marginal computational time. 

Keywords  Elastic-Plastic, Finite Difference, FEM, 
Impact Force, Indentation, Transient Response, Abaqus 

1. Introduction
The elastic-plastic impact behavior investigation is a 

prominent research topic. It is targeted by mechanical 
engineering researchers, in order to understand the 
relationship force-indentation of the contact. This is not an 
easy task because of the plastic deformation behavior 
inside the contact. The elastic-plastic transient response 
analysis of beam crashed by a projectile is necessary to 
study several phenomena such as the structural response 
and the local elastic-plastic contact behavior [1]. Several 
theoretical contact models have been used to study the 
relationship contact-force-indentation [2, 3], with the 
consideration of the rigid plastic idealization [4, 9]. It is 
one of the simplifying hypothesis which neglects the elastic 
deformations compared to the plastic deformations whose 

purpose is to simplify the theoretical study. The
elastic-plastic analyses are necessary to accurately study 
the transient impact response of structures.  

Many elastic-plastic models have been developed to 
analyze the structural response, but they are limited. For a 
credible study, the deflection of the beam, the plasticity of 
the impacted area and the plasticity out-of-contact areas 
must be taken into account. Zhang et al [10] presented a 
hybrid, numerical–analytical model for elastic–plastic 
beam impact system with consideration of global elastic 
plastic deformation of the beam applied to analyze the 
transient impact response for low impact velocity. They 
found that the impact force response is influenced by 
impact-induced wave propagation and that the model is 
especially suitable for studying impact-induced wave 
effects. The maximum velocity used is 3.13m/s, and they 
have clearly stated that with high velocity the plastic elastic 
behavior may appear in certain regions other than the 
contact region and that general analytical methods are not 
available. Wang et al [11] investigated theoretically and 
experimentally the applicability of different contact models 
on transverse repeated impacts of a sphere to an 
elastic-plastic beam. The investigations showed that for 
accumulated permanent indentation, Hertz [12] and MJG 
[13] contact models are in well correspendance with 
experimental results and for the contact time, Hertz model 
is in good agreement with experimental results according 
to low velocities. 

The aim of this paper is to elaborate a semi-analytical 
model of beams crashed by a spherical projectile and to 
analyze the transversal impact. The stress and deformation 
of elastic-plastic contact are assumed to be close to the 
contact area, whose dimensions are small compared to the 
size of the contact bodies. The Stronge model [2] is used to 
calculate the contact force and to represent the 
elastic-plastic deformation behavior. The elastic-plastic 

https://fr.pons.com/traduction/anglais-fran%C3%A7ais/that
https://fr.pons.com/traduction/anglais-fran%C3%A7ais/with
https://fr.pons.com/traduction/anglais-fran%C3%A7ais/high
https://fr.pons.com/traduction/anglais-fran%C3%A7ais/velocity
https://fr.pons.com/traduction/anglais-fran%C3%A7ais/the
https://fr.pons.com/traduction/anglais-fran%C3%A7ais/plastic
https://fr.pons.com/traduction/anglais-fran%C3%A7ais/elastic
https://fr.pons.com/traduction/anglais-fran%C3%A7ais/may
https://fr.pons.com/traduction/anglais-fran%C3%A7ais/appear
https://fr.pons.com/traduction/anglais-fran%C3%A7ais/in
https://fr.pons.com/traduction/anglais-fran%C3%A7ais/region
https://fr.pons.com/traduction/anglais-fran%C3%A7ais/and
https://fr.pons.com/traduction/anglais-fran%C3%A7ais/that
https://fr.pons.com/traduction/anglais-fran%C3%A7ais/general
https://fr.pons.com/traduction/anglais-fran%C3%A7ais/analytical
https://fr.pons.com/traduction/anglais-fran%C3%A7ais/methods
https://fr.pons.com/traduction/anglais-fran%C3%A7ais/are
https://fr.pons.com/traduction/anglais-fran%C3%A7ais/not
https://fr.pons.com/traduction/anglais-fran%C3%A7ais/available


 Universal Journal of Mechanical Engineering 7(6): 360-366, 2019 361 
 

transient behavior is influenced by the projectile impact 
velocity, which could occur in out-of-contact areas. The 
presented model is able to handle cases where plastic 
deformation is not confined to the impact point. A more 
general plasticity integration allowing to take into account 
the hardening is elaborated, The present model allows 
obtaining results of elastic plastic deformation especially 
equivalent plastic strain at integration point (PEEQ) in 
different zone, and the global deformation behavior of the 
beam according to low and high velocities.  

2. Problem Formulation 
Let us consider a simply supported elastic-perfectly 

plastic beam struck by a compact elastic-perfectly plastic 
sphere. The impact velocity is in the middle of the beam as 
shown in fig.1.  

 

Figure 1.  Impact of a sphere on simply supported beam 

The equation of motion of the sphere is: 
𝑚𝑚𝑠𝑠𝑤̈𝑤𝑆𝑆 =  −𝐹𝐹(𝑡𝑡) + 𝑚𝑚𝑠𝑠𝑔𝑔               (1) 

where  𝑚𝑚𝑠𝑠  and 𝑤𝑤𝑠𝑠  are respectively the mass and the 
displacement of the sphere, 𝐹𝐹 is the impact force. 

The initial conditions of the sphere are: 

 𝑤𝑤𝑠𝑠(0) = 0 , 𝑤̇𝑤𝑠𝑠(0) =  𝑣𝑣0              (2) 

Among several phenomena caused by the impact, we 
could find the relationship contact force-indentation 
provided by the Stronge model. The indentation between 
the sphere and beam is 

𝛿𝛿 =  𝑤𝑤𝑠𝑠 − 𝑤𝑤𝑏𝑏                      (3) 

The displacement of the impacted point 𝑤𝑤𝑏𝑏 and of the 
sphere will be calculated in the same increment of time by 
the finite difference model. 

 

Figure 2.  Elementary part of the beam 

Figure 2 shows an elementary part of the beam, the axes 
𝑥𝑥 and 𝑧𝑧 are respectively the axial and transverse direction. 

The internal forces 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖  are the lateral shear force v and 
the bending moment  𝑀𝑀 , the external force 𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒  is the 
distribution of the contact force 𝑝𝑝(𝑥𝑥, 𝑡𝑡) applied in the 
transverse direction. Without the damping consideration, 
the equation of motion of impacted beam is: 

𝜕𝜕2𝑀𝑀𝑏𝑏
𝜕𝜕𝑥𝑥2

+ 𝑝𝑝(𝑥𝑥, 𝑡𝑡) = 𝜌𝜌𝑏𝑏𝐴𝐴
𝜕𝜕2𝑤𝑤𝑏𝑏
𝜕𝜕𝑡𝑡2

              (4) 

where ρb and 𝐴𝐴 are respectively the mass density and the 
cross-section area of the beam. 
𝑤𝑤𝑏𝑏 is the transverse displacement of the beam. 
It should be noted that the elastic perfectly plastic model 

is used in this study and the loading unloading contact 
phases are considered. 

The following assumptions are adopted in the theoretical 
model for the motion of the beam: 
 The effects of strain-rate are negligible 
 Transverse shear effect is ignored 

To investigate the transient impact behavior of the 
considered elastic-plastic beam, a semi analytical 
procedure based on the finite difference method in the axial 
direction and the Lobato integration rule in the thickness 
direction is firstly developed. For the sake of generality and 
comparison a 3D finite element method analysis is 
elaborated based on ABAQUS. 

 

Figure 3.  Cross section of the beam. 

Figure 3 shows a cross section of the beam where the 
bending moment is calculated by the following integral: 
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𝜎𝜎(𝑧𝑧,𝑡𝑡) is the bending stress. 
The equation of the motion of the beam can be written as 

follows:  
 𝜌𝜌𝑏𝑏𝐴𝐴𝑤̈𝑤 =  𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒 −  𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑅𝑅              (6) 

where R is the residual force. 
The finite difference discretization of this equation leads 

to: 
 𝜌𝜌𝑏𝑏𝐴𝐴𝑤̈𝑤n =  𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 − 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛 = 𝑅𝑅𝑛𝑛              (7) 

The internal force will be calculated by finite difference 
approach: 
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The solution is advanced using an explicit load stepping 
algorithm: 

 𝑤̇𝑤n+12 =  𝑤̇𝑤n−12 + 𝑤̈𝑤n−12 ∆𝑡𝑡           (9) 

𝑤𝑤𝑛𝑛+1 =  𝑤𝑤𝑛𝑛 + ∆𝑡𝑡𝑤̇𝑤𝑛𝑛+12          (10) 

𝑤̈𝑤n is computed from equation (7) 

The initial conditions of the beam are:  
𝑤𝑤(𝑥𝑥, 0) = 0, 𝑤̇𝑤(𝑥𝑥, 0)=0 

The boundary conditions of the beam are:  

𝑤𝑤(0, 𝑡𝑡) = 0, 𝑤𝑤(𝐿𝐿, 𝑡𝑡) = 0 

𝑀𝑀(0, 𝑡𝑡) = 0, 𝑀𝑀(𝐿𝐿, 𝑡𝑡) = 0 

Due to the stability and accuracy of solutions in explicit 
temporal integration schemes, the time step length must 
satisfy the condition:  

∆𝑡𝑡 <
∆𝑥𝑥

�𝐸𝐸𝑏𝑏𝜌𝜌𝑏𝑏

 

3. Contact Model Selection 
In fact whenever the impact velocity is slow, the contact 

area is small compared to the size of contact bodies. The 
concentration of contact stress and contact deformation is 
limited to the contact area. In the present analysis, the 
Hertz elastic contact model [12] and Stronge model [2] are 
used for the elastic loading and unloading phases. 

The equivalent modulus of elasticity and radius are 
defined by: 

1
𝐸𝐸∗

=
1− 𝜈𝜈𝑠𝑠2

𝐸𝐸𝑠𝑠
 + 

1− 𝜈𝜈𝑏𝑏2

𝐸𝐸𝑏𝑏
 ; 

1
𝑅𝑅∗

=
1
𝑅𝑅𝑠𝑠

+  
1
𝑅𝑅𝑏𝑏

 

where  𝐸𝐸∗ , 𝑅𝑅∗  are respectively the effective Young’s 
modulus and the effective contact radius. 𝐸𝐸𝑠𝑠  ,𝜈𝜈𝑠𝑠  are the 
Young’s modulus and the Poisson’s ratio of the sphere and 
𝐸𝐸𝑏𝑏  ,𝜈𝜈𝑏𝑏  the Young’s modulus and the Poisson’s ratio for 
the beam. 

The radius of the beam 𝑅𝑅𝑏𝑏= , therefore, the radius of 
the sphere 𝑅𝑅𝑠𝑠 =𝑅𝑅∗. 

The relationship force-indentation in the elastic contact 
is: 

𝐹𝐹 = 4
3
𝐸𝐸∗√𝑅𝑅∗𝛿𝛿

3
2                (12) 

3.1. Loading Phase 

There are three sub-phases in the loading case, as listed 
in table 1. For spherical indentation, the elastic indentation 
at yielding is: 

 𝛿𝛿𝑦𝑦 = �3𝛱𝛱𝜗𝜗𝑦𝑦𝜎𝜎𝑦𝑦
4𝐸𝐸∗

�
2
𝑅𝑅∗               (13) 

𝜗𝜗𝑦𝑦 = 1.1 and 𝜎𝜎𝑦𝑦 =  𝜎𝜎𝑦𝑦𝑦𝑦  the yielding stress of the beam. 
The initiation of yielding at a point below the contact 

surface is caused by Hertz pressure. From this point, the 
plastically deformed region extends when the mean 
pressure increases above the yield pressure. However, the 
plastic deformation, which is progressing as contact 
pressure increases, the phenomenon below the contact 
surface continues until the most of the elastoplastic range. 
The incompressibility of the plastic deformation provokes 
a small quasi static elastic-plastic indentation of the surface. 
[2]. 

The indentation becomes perfectly plastic and begins at 
a contact radius when the plastic deformation develops 
outside the region beneath the contact.  

3.2. Unloading Phase 

The contact region during the unloading phase is 
considered elastic. The force-indentation relationship 
follows then Hertzian contact: 

𝐹𝐹 = 4
3
𝐸𝐸∗√𝑅𝑅∗𝑒𝑒(𝛿𝛿 − 𝛿𝛿𝑟𝑟)1.5           (14) 

The complet unloading from maximum indentation 
𝛿𝛿𝑚𝑚 which is in the plastic deformation range causes a 
permanent indentation 𝛿𝛿𝑟𝑟 and a new unloaded curvature 
𝑅𝑅∗𝑒𝑒of the contact area. 

Stronge model [2] assumed a geometric similarity: 

 𝛿𝛿𝑦𝑦
𝑅𝑅∗

= (𝛿𝛿𝑚𝑚− 𝛿𝛿𝑟𝑟)
𝑅𝑅∗𝑒𝑒

                 (15) 

The continuity of the contact force at the transition from 
the loading to unloading phase is a requirement for 
obtaining 𝛿𝛿𝑟𝑟  and 𝑅𝑅∗𝑒𝑒 . This condition is not valid when 
using the Stronge model [11]. 

To validate the condition and continue to use the Stronge 
model Wang et al [11] assumed that the initial force of the 
unloading is equal to the maximum contact force of the 
loading phase 𝐹𝐹𝑚𝑚 : 

 𝐹𝐹𝑚𝑚 = 4
3
𝐸𝐸∗(𝑅𝑅∗𝑒𝑒)0.5(𝛿𝛿𝑚𝑚 − 𝛿𝛿𝑟𝑟)3/2             (16) 

The substitution of equation (15) into equation (16) leads 
to the following expression of 𝛿𝛿𝑟𝑟 and 𝑅𝑅∗𝑒𝑒 :  

 𝑅𝑅∗𝑒𝑒 = �3
4
𝐹𝐹𝑚𝑚
𝐸𝐸∗
�𝑅𝑅

∗

𝛿𝛿𝑦𝑦
�
3
4

 ,𝛿𝛿𝑟𝑟 = 𝛿𝛿𝑚𝑚 − 𝛿𝛿𝑦𝑦𝑅𝑅∗𝑒𝑒

𝑅𝑅∗
         (17) 
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Table1.  Formulas of elastic-plastic contact Stronge Model 

Stronge Model 

Elastic Phase Indentation at yield Elastic-Plastic phase Fully Plastic phase Unloading Phase 

F =
4
3

E∗√R∗δ
3
2 δy = �

3Πϑyσy
4E∗ �

2

R∗ F = Fy �
2δ
δy

− 1� �1 +
ln(2δ δy − 1)⁄

3ϑy
� F = 2.8Fy( 2δ δy − 1)/ϑy⁄  

F = 4
3
𝐸𝐸∗(𝑅𝑅∗𝑒𝑒)0.5(𝛿𝛿 − 𝛿𝛿𝑟𝑟)3/2  

𝛿𝛿𝑟𝑟 = 𝛿𝛿𝑚𝑚 −
𝛿𝛿𝑦𝑦𝑅𝑅∗𝑒𝑒

𝑅𝑅∗
 

 ϑy = 1.1 Fy =
4
3

E∗√R∗δy
3
2  𝑅𝑅∗𝑒𝑒 = �

3
4
𝐹𝐹𝑚𝑚
𝐸𝐸∗

�
𝑅𝑅∗

𝛿𝛿𝑦𝑦
�

3
4
 

    𝛿𝛿𝑟𝑟 = 𝛿𝛿𝑚𝑚 −
𝛿𝛿𝑦𝑦𝑅𝑅∗𝑒𝑒

𝑅𝑅∗
 

 

4. Results and Discussion 
Transient impact behavior of elastoplastic beams is 

investigated based on the elaborated semi-analytical 
formulation and on the 3D finite element method using 
ABAQUS. The used geometrical and material properties 
are given in tables 2 and 3. 

Table 2.  Dimensional detail of the beam and sphere 

𝐻𝐻. Depth  27.8mm 

𝐵𝐵. Width 60mm 

𝐿𝐿. Length 780mm 

𝑅𝑅𝑠𝑠. Radius of the sphere 35mm 

𝑣𝑣0. Impact velocity 0.99m/s 

Table 3.  Mechanical material properties of the beam and sphere 

Sphere Gr 15 Beam Q345 
𝜌𝜌𝑠𝑠  7800 𝐾𝐾𝐾𝐾/𝑚𝑚3 𝜌𝜌𝑏𝑏  7800 𝐾𝐾𝐾𝐾/𝑚𝑚3 
𝑚𝑚𝑠𝑠  1.4 Kg 𝑚𝑚𝑏𝑏  10.929 Kg 
𝐸𝐸𝑠𝑠 208000 Mpa 𝐸𝐸𝑏𝑏 210000 Mpa 
𝜎𝜎𝑦𝑦𝑦𝑦  2550 Mpa 𝜎𝜎𝑦𝑦𝑦𝑦  345 Mpa 
𝜐𝜐𝑠𝑠  0.3 𝜐𝜐𝑏𝑏  0.3 

Figure 4 shows a quarter FE discretization of the impact 
problem used to simplify the modeling and to reduce the 
CPU time. The mesh size of the high-stress contact zone 
was refined, the smallest size being 0.2mm. The farthest 
contact area has been meshed with coarse mesh. 

 

Figure 4.  3D FE Model modeled by ABAQUS 

Figure 5 (a) shows the impact force evolution with the 
time reduced to 0.3 ms, by superimposing the semi 
analytical, 3D FE and reference results. The semi analytical 
solution is clearly in good agreement with the finite 
element solution obtained by ABAQUS software with a 2.4% 
error. The reference results from Zhang et al. [10] are offset 
to the finite element solution results with a 6.9% error. Our 
model is therefore in a good agreement with FE results 
compared to the reference model, This may be explained 

by the fact that we have used a finite difference 
discretization in the longitudinal direction and an 
integration through the thickness of the beam provided by 
Lobato rule, whereas Zhang et al [10] have used the finite 
difference discretization in the longitudinal direction and 
more throught the thickness of the beam. 

Figure 5 (b) shows the superimposed semi analytical and 
3D FE displacement evolution with the time reduced to 0.4 
ms. A slight discrepancy in the displacement evolution 
between the semi analytical and FE results, is resulted 
proving that a good correlation was achieved between the 
semi analytical and the 3D FE displacement evolution.  

 

 

Figure 5.  (a) Impact force evolution (b) Displacement evolution of the 
beam 
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Figure 6 demonstrates that the number of finite 
difference points N through the longitudinal direction, and 
the number of integration points P through the thickness 
have a deep influence on the results convergence. The 
convergence with respect to discretization points numbers 
is demonstrated. A minimum of N=601 and P=2 is required 
for reaching the accurate FEM results. It should be noted 
that Lobato rule is used for the integration through the 
thikness. 

 

 

Figure 6.  Effect of the number of finite difference points N and the 
number of integration points P on the results convergence 

Figure 7 shows the impact indentation force relationship 
by low and intermadiate velocities, it is completed, by 
continuity at the transition point from the loading phase to 
the unloading phase. By increasing the impact velocity the 
indentation increases with a larger permanent indentation. 

 

Figure 7.  Impact force-Indentation relationship with low and high 
velocities 

The contact time as a function of impact velocity of the 
sphere is demonstrated in figure 8. The contact time 
decreases by increasing the impact velocity, notice that our 
model based on the stronge theory reaches the finite 
element solution obtained by ABAQUS software as well as 
with the experimental measurements from Wang et al [11]. 
However, the theoretical solutions from Wang et al [11] 
based on the Stronge theory are below the experimental 
meassurements. This may be caused by the model type. We 
are quoting that Wang et al [11] have modeled the beam 
motion as a spring-mass to simplify the problem, whereas 
we have modeled the beam motion using the finit 
difference methode by discretization in the longitudinal 
direction and numerical integration through the thickness 
of the beam provided by Lobato rule. 

 

Figure 8.  Contact time of the semi-analytical solutions experiments and FEM  
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Figure 9.  Plastic Deformation result of 3D FE with 𝑣𝑣0= 0.99m/s 

 

Figure 10.  Equivalent Plastic Strain prediction from the semi-analytical model with low and high velocities 

The plastic deformation area, at a distance of 1.52 mm 
from the center of the beam is shown in figure 9. It is 
observed that the plastic deformation remains below the 
contact zone with an impact velocity 𝑣𝑣0= 0.99m/s. 

The plastic peak of the beam for low and high velocities 
from 5 to 20m/s is presented in figure 10. For impact 
velocity from 0 to 5m/s, the highest plastic peak is 
concentrated under the point of impact with no plastic 
deformation throughout the beam. For 10m/s of impact 
velocity we have noticed that the maximum plastic peak 
value is concentrated under the point of impact with plastic 
deformation of less than 0.2% throughout the beam. For 15 
to 20m/s of impact velocity with plastic deformation of less 
than 0.2% throughout the beam we found that the plastic 
peak is not only concentrated under the point of impact but 
it is presented with a value larger than 0. 2% on the other 

points of the beam.  
With a low velocity it is found that the plastic 

deformation is limited to the point of impact, while a high 
impact velocity causes plastic deformation by bending 
elsewhere than under the impact point. 

5. Conclusions 
In this paper, we presented a semi-analytical model 

combining finite difference method with the Hertz contact 
theory and the Stronge model. The considered impact 
problem of elastic plastic beams impacted by a low 
velocity projectile was numerically solved. The model 
results are compared with the 3D FE model. It was 
demonstrated that the model is credible and can analyze the 
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impact response under various impact velouties. It is 
effective and very fast in comparison with the FE model. It 
was shown that the finite difference discretization size and 
the number of integration points through the tickness have 
an influence on the results convergence. The plastic 
deformation is influenced by the impact velocity. We have 
noticed that a high velocity causes plastic deformation by 
bending. 
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