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Abstract In the paper, we propose a systematic approach
to design and investigate the adequacy of the computational
models for a mixed dissipative boundary value problem
posed for the symmetric t-hyperbolic systems. We consider a
two-dimensional linear hyperbolic system with variable coef-
ficients and with the lower order term in dissipative boundary
conditions. We construct the difference splitting scheme for
the numerical calculation of stable solutions for this system.
A discrete analogue of the Lyapunov’s function is constructed
for the numerical verification of s tability of solutions for the
considered problem. A priori estimate is obtained for the
discrete analogue of the Lyapunov’s function. This estimate
allows us to assert the exponential stability of the numerical
solution. A theorem on the exponential stability of the solution
of the boundary value problem for linear hyperbolic system
and on stability of difference splitting scheme in the Sobolev
spaces was proved. These stability theorems give us the
opportunity to prove the convergence of the numerical
solution.

Keywords Difference Scheme, Lyapunov Function, Mixed
Problem, Stability

1 Introduction

We consider the mixed dissipative boundary value problem for
a two-dimensional linear hyperbolic system with variable co-
efficients and lower order term [1]. For this problem, we con-
struct and investigate the difference splitting scheme in order to
obtain stable solutions. A discrete analogue of the Lyapunov
function is constructed and an a-priori estimate is obtained for
it. The obtained a-priori estimate allows us to assert the expo-
nential stability of the numerical solution.

It should be noted that numerous problems have been de-
voted to the solution of such problems (see [3]-[10] and ref-
erences in them). Studying the stability of solutions for one-
dimensional hyperbolic systems is the subject of [2]. Authors
of the paper investigate the stability of the solution by con-
structing the Lyapunov function and using a priori estimates

for solution in various functional spaces. However, stability
of the difference schemes, constructed in all these papers, was
investigated using the technique of constructing dissipative en-
ergy integrals. The a-priori estimates are obtained in these pa-
pers. But they are not enough to get exponential stability of the
numerical solution.

2 Differential statement of the problem

In the domain G = {(t,z,y) : 0 <t <T,0 < 2 <[, —00 <
y < 400}, we considered a symmetric hyperbolic system in a
special canonical form

ov ov ov

E+K%+C@+MVZO (1)
with boundary conditions for x = 0 :
vl =gsv!! 2)
forz =1:
vl = vl 3)
and with initial dataatt = 0
v;(0,z,y) = pi(z,y), i=1,...,n, 0 <z <, @

—00 < y < +o0

I

v _ )T 11 —

(v1,v2,... , Vv =
(Vmt1, Umaas---,0n) T, K is a diagonal matrix, C is a

positive definite matrix, M is a n-th order square real matrix

where s U

v K+ 0
V= I VII :| ) K= ( 0 K- ’
EE 0 - 0
0 ky -~ 0
K+_ . . . 9
0 0 kn
kmii O 0
0 kmso 0
K™ = . . 7ki>077;:17 ) 1Y
0 0 kn
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C = [lei; (@), M = [Imy;(2), 4,5 = 1,...,n,0 <@ <1,
s is a matrix of order (n — m) X m, r is a matrix of order
m X (n —m). The initial functions are assumed to vanish for

1
ly| > §Y . The similar problem is considered in [1].

The assumption of positive definiteness of the matrix C is
not mandatory [1]. It is introduced to simplify the construction
of the difference scheme. In fact, if the matrix C does not
satisfy this assumption, then by introducing new coordinates

/ ! 4l
TLy,t
=z =y tuwtt' =t

we can rewrite the equation in the form of

ov ov 8

will be positively definite for a sufficiently large w. Here E 1is
the identity matrix.

Suppose that the initial data ¢ = (p1,¢2,...,0,)7 €
W3 ((0,1), (=00, +o0), R™) satisfy the compatibility condi-
tions: . -

T ®)
pr=rp, z=1, t=0.

Here W ((0,1), (—o0, +00), R™) is the Sobolev space.

Definition 2 (exponential stability [2]). The system (1) with
boundary conditions (2)-(3) is said to be exponentially stable
in the L?— norm if there exists such v > 0 and ¢ > 0 that for
any initial condition € L2 ((0,1), (—o0, +00), R"), the L2-
solution of the mixed problem (1)-(4) satisfies the inequality

[ (t

< ce @l ((0.0), (=00 +o0);Rn)» E = 0

s ML2(0,1), (00, +o00)R7) <

(6)

We construct the Lyapunov’s function in the form:

l m
/ {Zuie” [vi(t,z,9)]* + )
0

+

pie”” [oi(t, @, y)}z} dzdy
1=m-+1

where j1; > 0,i=1,...,n, u™ = (1, ..o, o) 7,

pwo= (MTVL-‘,—lv ) /f”n)Ta

e VT + 0
)= (0 ).

Theorem (exponential stability). The system (1) with the
boundary conditions (2)-(3) is exponentially stable in the L?
-norm if there exists v > 0 and u; > 0,7 = 1,...,n such that
the following matrices

(0 ) (5 2)-(25):
() A ()

- ®)
v K ()| u(e) - K@) + po)M @)+

+u(x)M(z),z € (0,1)

are positive definite.
Proof. We calculate the derivative of the Lyapunov function:

+oo 1
L)y= [ [0 ()

v,v)dxdy =
+o00 lioo ’ +oo 1
z_f Of( w(x)opv, v)dxdy—i—_f g x)v,0pv) dady =
oo 1
= [ ) R0, — €00, — Mlo)V] v) dady+
oo 1
+jf Of (u(z)v, [-K(2)0,v — C(2)dyv — M(x)v]) dedy =
oo 1
T @K%, + (o), K)o,
()0, ) + (v, ()0, dedy —
- T MO0V, + (u(o)v, MG oy
Since
(@)K (x)3,v, v) = (3 () K(x)v], v) —
K)o v)

W (@)K (z) = —v [K(z)| p(x),
we have the following identity:

+oo 1
) == | J0: (K(z)u(

S z)v,v) + 0y (C(z)p(x)v, v)| dedy—

oo 1

- jf bf ([v K (@) ulx) - K'(@)u(z) + M (z)p(z)+
0o 1

+u(x)M(z)] v, v) dedy = — + (K(z)p(x)v,v) | dy —

l +oo Tooo l ’
— [ (C@)u(z)v,v) ) de— [ g([V|K($)|M($)—
K'(@)ula) + M (@)ua) + ()M ()] v, v) didy =

400 +o0 1

== T @t ay T f o ki1 o)

K'(z)p(r) + MT () u(x) + p(2)M(z)] v, V) dady.
Transform separately the each term of the obtained identity:
i

1)—(K<x>u<w>v,v>\ = (KOO (L y) V(L)
0
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According to (9) we have

l
2) - Of (v [K(2)| p(2) — K () pt

+MT (z)p(z) + p(z)M(z)] v, v) dz < 0.
Taking into account these transformations we obtain

+oo 1
n=-F

dy— J (v
—o0 0
X p(a) — K’( )i )+MT( ) (x)—i—
+u(z)M(z)] v, v) dzdy < 0.
Since the matrices (9) and v |K(z)| pu(x)
tive definite for any x,we get following
([v K (2)| p() — K'(z) (@) + M (2)p(2)+
+u(2)M(z)] v, v) > v(|K(z)| p(z)v,v) > va(u(x)v,v),
a=v min k;(z)
1<i<n
0<a<l
for any vector v € R". Then we have

-

Hence,

are posi-
inequality

x)v,v)dzdy = —nL(t), n=r«a

L(t) < e ™L(0), t>0.

However, since there is such a constant v > 0 such that
1 2
3 1V M z2g0.0),(~o0, o),y < L) <
<AV I r2(0.0), (00, 400), 77 »
= fj:j fol (v,v)dzdy

2
V(I Z2(0,0), (= 00,4-00), R

we obtain

IV ) 20,0, (— 00,400y, R7) <

< yevt? @l L2 ((0,0), (—o0,+00),mm) » T € [0,+00).

3 The difference scheme

In the domain G, construct the difference grid
Gn ={({t"zj,yq) : 0<t" <T, 0<uz; <I,
Yq < +oo} where t* = kAt, k=0,...,N; NAt =

—00 <

sz(j—i—%)Ax; JAzx=1; j=0,...,J -1,
Yo = (¢4 3) Ay; = —00,...,+00;

and denote the values of the numerical solution at the nodal
points by

Vig = AxAy// (", z,y)dzdy,  j=0,...,J—1.

q J

m\»-‘
mh—‘

For the numerical solution of the mixed problem (1)-(4), we
suggest a difference splitting scheme

1" 1\%
(Wn)j;g = (VH)%, -
(W )jq (V )jq A
+ I I\~
y [ Ki, o0 } (‘il)%] (Vlzjgl,q .0
0 Kjy (v )jq (v )j+1 q
7=0,....J—-1;, k=0,...,N —1;
q= —0Q, 7+OO7
) A K K
Wjg = Wig — T;Cj [qu qu—l] J
j=0,...,J—-1;, k=0,...,N —1; (11)
q= —00,...,+00;
n’-&-l . .
Vi, AtMJu]q, 7=0,...,J—1; (12)
k=0,...,N—1.
The initial conditions (4) are approximated as follows:
q+§ J+2
) )dxd
Via = Ax Ay / / (@ y)dvdy, (13)
Yg— 3 T
7=0,...,J—1; :—oo,..+oo
The boundary conditions are approximated in this way:
k+1 Kk+1
( (VI)—lql > _ ( 0 s ) ( (VI)J—I,lq )
K+ - K+ )
(vH)Jq r 0 (vH)Oq (14)
k=0,....N—1;,g=—00,...+
Suppose that the condition of the CFL
< i . N <
Az 1<I}1<%LX kil <1, 1;3135( [Xi(Cj)l <1
0<5<J—1 0<j<J—1
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holds. Here \;(C;) are eigenvalues of the matrix C;.
Now we study the question on the exponential stability of
the solution of the difference problem (10)-(14).

Definition 2. The difference scheme (10)-(12) with a differ-
ence boundary condition (14) exponentially stable if there exist
constants 77 > 0 and ¢ > 0 such that for any initial condition
v, € L((zj_1.%541), (Yg—1+Yq+1), R"), the solution of
the dlfference boundary value problem (10)-(14) satisfies the

equahty

AxAy Z Z (v Vi

q_foo j_
x AzAy Z Z (v0,v2), k=1,...,N.
q=—o00 j=0

Here, we formally write out the sums of an infinite number
of terms. However this is done only formally, since only a
finite number of them are nonzero. It is due to the fact that
the difference solution is non-zero only at a finite number of
points.

Consider the difference boundary-value problem (10) - (14)
with the stationary solution
vi,=0,k=0...,.N—-1; j=0,...,
q= —00,...,+00.

In order to prove the stability of the difference boundary-
value problem (10) - (14), we propose the following function
as the discrete Lyapunov function

K\ < cemMn
qu) <ce X

J—-1;

+oco J-—1

=Azly Y (Vi vy,

qg=—o00 j=0
py = plz;),i=1,...,

e Vit 0
Here p; = ( 0 H v > .

Theorem 2. Let 7' > 0 and the discrete Lyapunov function be
defined by (15). If the condition of CFL ﬁ—; | Jnax |k ] <
0=j<J-1

(15)
J—-1

, Ay | nax |A:(C;)| < 1, holds, and there exist real
0<j<J-1
numbers v > 0 and g; > 0, ¢ = 1,...,n such that
0<n=vae ¥ -3 < 1, wherea = min |k,
1<i<n
0<_]<J 1
b= i |kiy| s My My — AT M, =
0<j< -1
0,...,J — 1 are non-negative definite matrices and
u“'e“’m"K‘j_l 0 0 r
0 poe" 1Ky s 0)”~
" ) G 0 0 s
0 poertI Ky r O

is a positive definite matrix, then the numerical solution v, of
the difference boundary value problem (10)-(14) converges to

the stationary solution v;, = 0 for the norm L2

Proof. Using the Lyapunov discrete function, we calculate
the derivative of the Lyapunov function (15) as follows
Lv*H—L(v®) _ Lv"H—L@®) | L(u®)—L(w")

At + At +

Lw™)~L(v")
+ At )

+oo J-—-1
where L(v") = AzAy > Z (Vi V), L(w) =
q=—o0 j=
+oo J-—1
= Dby 5T (i w).
g=—o0 j=
+o0o J-1
Lu®) =AzAy Y > (uf, pul,), £=0,...,N.
g=—00 j=0

Now we prove that this quadratic form is negatively defined.
For this, it suffices to show that all three quadratic forms on the
right-hand side of the previous equation are negatively defined:

L(vftH—L(u™) _ _ AzAy ~
At At
oo I K+1 K+1 K K
X . Z—oo 2 [( Al ) ( quu’jujq)]a
L(u™)—L(w") _ AzAy «
At - At

+oo J-—1
IDIEDY [(u?q’uju;q)_(W?q"“jwfq)}’

q=—o00 j=0
L(w")—L(v") _ AzAy >
At At
+oo J—1
X303 (Wi wi,) = (Vi g viy)]-
g=—00 j=0

Lemma 1. Let the conditions of Theorem 2 be satisfied.
Then the quadratic form

L(vn+1) _

At

L(u®)

<0

is not positively defined.

Proof. Using the difference scheme (12), calculate the

. L(v**H)—L(u")
quadratic form =—————".

L(vFt Y —L(u”® AzAn +oo J—1 . ;
~ A)‘t W) — AL 2 Zo K[u]q — Athujq} ,
q=—00 3=

s [0~ s ) = a5 )] = 250
+oo J—-1
% _Z Zo [(u?q’/”ju;q) - (quaﬂjll;q)} — AzAyx
q-‘roo §11 . .
SRIRpY [(Mjujq’“ju’;q) + (u?qvﬂijuJ'Q) B

gq=—o00 j=0

—At(M; u]q,,u]MJqu)} = —AzAyx

+oo J-—1
x XX [( ufy, M7l ) + (u?q’“iju;q) N

g=—00 j=0

—At(uf,, MT i Mju’, )} = —AzAyx
+oco J-—1

X Z 2:0 ( Jq’ [ j [Lj +,uij — AthT,uij} u?q).
q=—007

By virtue of Theorem 2.
AtM?}LJMJ,] = 0,...,J —
matrix. Hence,

MTu; + pM; —
1 are nonnegative definite

Lemma 1 is proved.
Lemma 2. Let the conditions of Theorem 2 be satisfied.
Then the quadratic form

L(u") — L(w")

<
At =0



86 The Difference Splitting Scheme for Hyperbolic Systems with Variable Coefficients

is not positively defined. Since the initial functions are assumed to be zero at |y| >
%Y, then (see [1]) for ¢ = At, the difference solution ob-
tained by the described scheme will be obviously equal to zero
if [y| > 1Y 4+ Ay att = 2A¢,if [y| > 1Y 4+ 2Ay , etc. The

Proof. Introduce the notation O; = ﬁ—ZCj. Using

the difference scheme (11), calculate the quadratic form
L(u®)—L(w")

At : oo U1 difference solution will be equal to zero on the last grid layer
L(u”)—L(w"™ Az A < K K K K 1 i
( )At w") _ ZYEDS Z [( S jq) _ ( jqa,u'jqu) =Tif |yl > 3Y + % Ay Thus, the grid function w/, v&nll
q=—o0 j= € NONZero on any con51dered grid layer that only at a finite
AzAy - R {<,  number of points. If ¢ is not too large, wi, = 0if [y] > Y
At q:z;oo ]go [({qu 0; [qu qu—l] b {qu . Taking into account this property of difference solutions, we
have:
-0, Wi —w? _ — (W, pwh AzAy S x L(u®)—L(w" Arpy X I K
J [ jq jq 1]}) ( jar I Jq)} At e (u )At W) < DY [(Mgqu_p
J—1 g=—00 j=0
X J;O { (W5 mw5y) = (Whos 1 wiy) = 2 (w5, O, o;wf, 1) (,quJq,O w )}
A A Therefore
K aray K
x [wiy = Wi, 1))} 25 Z Z (105 [w, —wi, 4], L(u") — L(w") <0
q—foo ] Al =<
0; [w}, )=tz 5 Z{( 5 [Wiy = Wig] i
J Wig—1 =m0 1= 1;0 ja—11> Lemma 2 is proved.
_ Lemma 3. Let the conditions of Theorem 2 be satisfied.
0; |w [ q D ( qu’ 0, [ qu 1})} T Th S .
+OO 1 en the following inequality
AzA K
Aty Z > { (1 O5w5,, O5w5,) —2 (/‘jojqu7
g=—p §=0 L(w") — L(v") < —nL(v")
" ————= < —nL(v
Wig- 1) ( Wig—1: 0w 1)} + At g
+ fgou 5 Z { 2 (uywh,, O;wh) +2 (1w, holds.
e I Proof. Introduce the following notation
AzA K K lad
O;wio— 1)} = Zty Z .ZO{(/‘joj""quOjoq)+ Wr — [ (Vl)j_nq K| = K;r—l 0
N . | (vi)T T 0 K
+2 (/JJ [E -0 ]W]qvo ]q 1) + (/J“jojqu—17 D _ At |(I<| )]+1,q J+1
O;w’, 1) — 2 (1;why, Ojw

Here E is the unit matrix. By virtue of the condition of the Taklng 1nto account these notations, using the difference

CFL, the matrix (E — Oj) > (. Suppose that the matrix scheme (10), calculate the quadratic form %. Then

(E — O;)1; 0, is a positive definite matrix. Then we obtain we obtain:
Lw")—L(v") _ AzA K
2(#]‘ [E - O;]w’,, 0, W]q 1) < o )At — = Atyq,zmjz [( Wi W) —
< (u;[E -0 ]qu,O m)+ Apn, Foo Il
: + (u;[E — O4]w ) W, (1;OJW]q 1) = )y = (Vg 15V5)] == 253" qufjoo Z: [({v5, = Dj [V~
MJWJq’O WJq #;0 Jq’OJW —W* IvE _D. Wr 5 vk )] =
wh s UGV (v v
o) N s g W B )
Taking into account this inequality, we have T At q:X—:oo JZ:O (V5 13 V5q) = (V5qr 15 V5y) =
L(u L(w" -
R = =2 (13 Dy [v, ~ W)+ 2500
(105w Wiy, O Wi ) f_WET D, [ve — We )] —
AuA +2 (MJ [E—-O, ]W]q,O w]q 1) + x _2 Z [( [ Vig ~ jq] Bt [qu Jq])] =
20 55 (0w, 0 < iR
g=—o00 j=0 Hi jq » qu 1 AmAy e = K K K K
=2 (p;wh,, Oy qu) q_zoo ]Z (1D [V, — W5, ], Dy [vi, — Wi ]) -
—2 D - W~
AfAy 72: ZO [( Jq7OJW )+ A(IZ jq?oon[ 1 Jq])]
g=—00j = Zty oy [(UJD V]quv;q) (,U,JDVM,D]'W;Q) +
( Wi Ojw )—( O qu70 )] q=—00 j=0
K AJAK
{njw?, Wig—1, QWi 1} ( DJWJq’D iW; )} Ar X
+o00 1
AzAy -g):c Jz_:l 0 qu 10 qu 1 x _2 20 {_2 (MjV;Q’DjV;Q) 2 (,uj Jq’D WK )} -
At =0 i=0 | T (10 W]q 1v0jqu71 - qu;y ﬁoZ J—1 ;
—2 ( WJ‘PO ) q—z—:oo jzo |:(M]D qu,Djqu) +
4o J-—1 K
AzA K . _
= Aty DY [(lujquil,ojqu 1) +2 (U](E D) Vi Dj W )}

(,UJJW]q,O Wm) . +ArAy ZO:O Z K D qu,D W") (/~LJ vi,Dj V )}

qg=—o00 7=0
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By virtue of the CFL condition, matrices
(E-D,) > 0 and (E—Dj;)u;D; are posi-
tive definite diagonal matrices. Hence, we have A +oo J—1 v
2 (Mj(E_D') Jq’D WK) < (Uj(E_D ) quDJVJq) =e xqu—z;oo ]ZO ((( )] 1q7li+e_mc”1><
(Nj(E*D )W;qu WH ) - (“J'V?q’Dijq) x K (VI)H )) =
— (mDv5, DVE ) + (13 W5, DWE) = (1 DWW, DW) 5 i)
Tzzlzmﬁg) L}na(; account this 1nequa11ty, we  obtain = e*l’AmAy > ZO (<VH);+1,q 1 eVTItL
w")—L(v _ q=—00 j=
At = N
oAy b0 Izl x Ko (Vi) ):
= AA%y o ZOO ]Z [( iVig D] ) AH_ +02+qu N
=_ e~ VAT A ( o WJK )
+2 (MJ(E D) Jq’D Wi )} yq%:OOJZO (v ) ure (v )Jq
z z [(1/D; W5, D;W,) by 5 ()t K (V) )
- +oo I\F + —vxzjy_ + I\~
_2( JQ’DJVJQ)] < = Ay q_X_:OO jz [( J jq’DJng) + ((v )J*Lq ’Jf:o eJ71’ 1KJ—1 (V )Jfl,Q>
_UA;I;A ( 11 K —eVTi KT 11 'V”)
+( Jq’D vi ) (M]D vjq’Djvth>]+ ‘ yquzoog:o (V )an“ ey (v )”
Loty q_;oo]zo [(1; W5, D;W5 ) — (1D, W5 D;W* )] +e —Mmyq; - ((vﬂ)g e Ky (v H)Oq)+
11 — v —
AmAy quoojz [(1 Dy W5y, DWW, ) = 2 (V5 Dyvy,)] (( ) e (v )Jq) N
+oo_.]71 _VAmAy Z Z ( ,/J,'K‘Vf»i )+
=25 35 (W DWE) — 4, D) o 120 1
=TeI= Lo —vAzx 1 + _—vx K+ I\ ® )_
or L(w"™) 2SL(v ) < AZ?'L/ Z Jzzl [( W- D, WK) +e qu*zoo ((V )—1,q po€ ’ -1 (V )—1,11
— jq?
e (65 it e K, ()5, )
(IU’J Jq’DJqu)] 00 '

Transform separately the first quadratic form in the right side
of this inequality:

+oco J-—1

AmAy Z Z (M]quvD Wn ) _
g=—00 j=0
+oco J-—1
=Ay X Z( o
g=—o0 j=
CateKS L 0 )
O /’['_eVIJKj+1 Jq -
A +oo J—1
eV xAy Z Z ( jq7
q=—00 j=
_ MJrefuzJ 1Kj‘_ 0 wr ) —
0 preTnKG |

+oco J-—1

-y S g nKv) +
(v~
_|_e—vAmA —1,q ,
yq_Z:W(_ (VH)iq
u-&-e—uoni‘l 0 (VI),l}q _
0 poertI Ky (VH)3
e ([ ()
_e—VAsz J—1,q ;
q-Z_oo(_ )5, ]
y ‘u+efl/m,1K}‘_1 0 (VI)Jqu
0 poer 1Ky (VH)Oq
Here
K o
<=

Taking into account the boundary conditions

()= 3) ()

we have

87
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+oo J-—1
a0 55 (1w, W ) ey
q=—o00 j=0
+oco J—1 0 s
< 8 S ke £ ()5
g=—o00 j=0 = r
1 k+1
O ) [ ate g 0 y
e L 0 ek
q
k+1
% < 0 s ) (VI)J—l,q _
r 0 (vII)g;Fl
e ([ ()]
_Ay Z Jf"él’q )
q=—00 ([ (VH)Oq
+ vt K + 0 (VI)H
% |:.u“ € J—1 :| J— l,q
— VT _ - 1T
0 u-e’* 1Ky (v )Oq
Suppose that the dissipativity condition
pre e K 0 (0 r y
0 poer 1Ky s 0
+ —vzot+
ure K™, 0 0 s
X { 0 perm K } ( r o) 0 holds.

Then we obtaln
S Z Z (Wi, D;Wi ) <

q=—o00 j=
+oo J—1
<oy 3 (Vi mK v, and, hence
q=—00 j=0
L(w" (v e—vAT IS "
L(w")=L(v") ) ) A quz > ( quNjKjqu) -
=—00 j=0
Ay ST (Vi KL, v) =
g=—00 j=0
+oo J-—1 A
=8y 55 (v A — K] Vi) =
g=—00 j=
+oo J—1 _UA
=Ay ¥ ¥ ( Vi 1] [6 Y ‘”Kj—Kj+KJ_|K|j] V?‘J)
q=—00 j=0
+oco J-—1 A
— a0 5 i e k)
g=—o00 j=
+oco J— 1
+Ay > > ( Vigs Iy [KJ - |K|J:| V;q) -
q=—00 j=0
A +oo J-—1
= (AT —D)AY 3 X (vE K vE) +
q=—00 j=0
4oo J— K’ —K+ 0
Ay <V'?»/~L'[ ! a i ]V“)
q:z;ooggo g 0 K=K 17"
+oco J-—1
_ —vAzAy > Z ( ]q"qujV?q) -
g=—o00 j=
+oco J-—1
Achy 303 (v KV,
q=—00 j=

Since according to the condition of Theorem 2, there are
constants

. A
a= min |k;; = max ‘kz ’
1<i<n kil B 1<i<n
0<5<J—1 0<5<J—1

such that 0 < vae "% — B < 1, we get
L(w") — L(v")

Al < —nL(v").

Here
—vAz _ B

n = vae
Lemma 3 is proved.
As aresult, lemmas 1-3 imply the following inequalities:
L(v*t)—L(u") L(u")—L(w")

Lw")— ()ll =0 i =
= At < TIL( )

Summing up these inequalities, we have the following for the

quadratic form

L(VN+1)—L(VK) L(VK+1)—L(VK) L(vN+1)_L(un)
L)L) A = A f
< —nL(vF)ortgrtt <

Recursively applying this

L) Lw®) | Lw)-L(v®)
u®)—L(w" w"®)—L(v"
+ At K+1+ oA
—nL" or % <
inequality, we obtain
e+l < (1 _ Atn)fs—&-l Lo <

e M1 [0 5 =0,...,N—1.

—nL".

e—"?At("H‘l)LO _

Denote

Cy = min
1<i<n

025271
{@ij : |pj —

{wij : lpj — =Bl =0}, Cx =

max
1<i<n
0<j<J-1

Then

w;; Bl =0},

ClES,UjSCQE, jZO,...,J—l.

It follows from here that
Citday 5T (vivyy) S 1 <

q=—o0 j=
jJroo J—1
< Coe M= AxAy > Z (V0 20 ?q)

q=—00 j=

k=0,...,N,

Azdy Z (Vi v
q——oo =
4o J— =

RapY Z(an 2):

q=—00 j=0

Hence, the numerical solution v7,
exponentially stable in the Lo-norm.
Theorem 2 is proved.

fq) < Ce M= AzAy x

HZO,...,N; C:CQ/Cl.

of the mixed problem is

4 Conclusions

_In conclusion, we note that the stability of a difference splitting
scheme was studied in the work for the numerical calculation

of stable solutions of a two-dimensional linear hyperbolic sys-
tem with dissipative boundary conditions in the case of variable
coefficients with lower terms. A discrete analogue of the Lya-
punov function is constructed for the numerical value of stable
solutions of a two-dimensional linear hyperbolic system with
dissipative boundary conditions in the case of variable coeffi-
cients with lower terms. An a priori estimate is obtained for
the discrete analogue of the Lyapunov function. The obtained
prior estimate allows us to assert the exponential stability of
the numerical solution. A theorem on the exponential stabil-
ity of the solution of both the differential problem and the dif-
ference split-ting scheme for linear hyperbolic systems in the
corresponding norms is proved. Consequently, this gives us
the opportunity to prove the convergence of a stable numerical
solution to a stable solution of a differential problem.
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