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Abstract In this paper, we present a simple model for 
the dynamics of one dimensional of a self-gravitating spher-
ical symmetrical gas-dust cloud. We take two analytical 
approaches to study the dynamics of a gravitating system of a 
gas-dust cloud. The first a pproach s o lves a  s e t o f  non-linear 
equation of dynamics of a gravitating system. The second 
approach is a Cole-Hopf transformation, which is used to sim-
plify the equations of dynamics and after that, we applied the 
method of characteristics to reduce partial differential 
equations to a system of entirely solvable ordinary differential 
equations. The results found by the analytical method and the 
Cole-Hopf method are compared with each other, showing that 
both lead to the same result. The obtained results in this study 
are presented in plots. We used the Mathematica software 
package in performing calculation and plotting graphs.

Keywords Hydrodynamics, Non-linear PDE, Cole-Hopf 
Method, Gravitating System

1 Introduction

One of the general problems in astrophysics is a description
of the fluid flow of gas-dust medium in the gravitating field.
Mechanical theories of gravitating system of gas-dust cloud
can be developed from two quite different starting points: We
can introduce either the model of N gravitating mass points [1],
or the model of a compressible fluid streaming in the phase
space [2,3]. In this work we will study a model of a compress-
ible fluid of a gas-dust cloud.
In order to simplify the equations of motion, we must make
several approximations. We shall assume that self-gravitating
gas-dust cloud is spherically symmetric. The assumption of
spherical is playing a fundamental role in explaining qualita-
tive behaviour through the analytical solving of equations of
dynamics. The magnetic field, radiation force, rotation prob-
ably play important roles but to simplify the problem in this
paper we will be ignoring these factors.
In this work, The model is described by systems of non-linear
partial differential equations, which no existing general theory
for solving them, so the derivation of analytical solution is a

important problem, and search for analytical solutions is now
motivated by the desire to understand the mathematical struc-
ture of the solutions and, hence, a deeper understanding of the
physical phenomena described by them.
The dynamics of a gravitating system of gas sphere have been
studied analytically since the mid of the 1960s, by a number
of authors (e.g. [3–6]). Several authors have applied similarity
technique [4, 5, 7] to study the dynamics of gas cloud, the cen-
tral element of these studies involves the form of the equation
of state used.
Many numerical simulation have been performed in order to
study the dynamics of the collapce of clouds [8–10]. The nu-
merical simulation techniques have become popular with the
development of the computing capabilities, and although they
give approximate solutions, have sufficient accuracy for engi-
neering purposes. However, numerical methods often do not
provide an opportunity to understand the internal nature of the
solutions obtained. Due to this search for the methods for con-
structing exact solutions , will remain one of the important re-
search areas in hydrodynamics.
Many analytical methods for solving nonlinear partial dif-
ferential equations were suggested during the last decades
[11, 12]. For problems of the dynamics of a compressible
medium, one of the main methods for constructing exact so-
lutions is the Hodograph transformation method [12, 13], and
some other similar methods. However, these methods allow
obtaining solutions in a specific form of dependence of coor-
dinates and time on fluid flow parameters, which complicates
their interpretation and the construction of solutions to initial
and boundary-value problems. As an alternative approach is
the Cole-Hopf transformation method [14], in contrast to the
Hodograph transformation method allows us to construct so-
lutions either explicitly or in the form of integral of motion,
setting the solution in an implicit form.
In this study, we intend to investigate the dynamics of the grav-
itating system of gas-dust cloud by the analytical method and
Cole-Hopf transformation method. Both methods will reduce
the set of partial differential equations to the solvable ordinary
differential equations.
The Cole-Hopf transformation provides an interesting method
for solving Burger’s equation and can simplify some non-linear
partial differential equation and thus makes them analytically
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solvable.

2 Fundamental equations
In this paper, we consider one-dimensional compressible

spherical cloud. Assume the spherical cloud has mass M, ra-
dius R and uniform density ρ0. All the physical quantities will
depend on two independent variables; radius r and time r. Let
p(r, t), ρ(r, t), v(r, t), and Φ(r, t) be the pressure, mass den-
sity, radial velocity, and gravitational potential respectively.

In a fluid description, the dynamics of a spherically symmet-
rical compressible gas-dust cloud is governed by the continuity
equation

∂ρ

∂t
+

1

r2
∂

∂r
(r2ρv) = 0, (1)

and the momentum equation

∂v

∂t
+ v

∂v

∂r
+

1

ρ

∂p

∂r
= −∂Φ

∂r
. (2)

The gravitational potential Φ is given by Poisson’s equation

1

r2
∂

∂r

(
r2
∂Φ

∂r

)
= 4πGρ, (3)

where G is Newton’s gravitational constant.
The system of equations (1)–(3) are non-linear partial differen-
tial equations are quite complicated, and the general solution
cannot be obtained.
We shall simplify our model even further and assume that the
cloud collapses as pressureless dust, which corresponds to the
equation of state p = 0; like many authors have been neglected
the pressure to simplify the problem [16, 17]. Now we can
rewrite the (1)–(3) as:

∂ρ

∂t
+

1

r2
∂

∂r
(r2ρv) = 0, (4)

∂v

∂t
+ v

∂v

∂r
= −∂Φ

∂r
, (5)

1

r2
∂

∂r

(
r2
∂Φ

∂r

)
= 4πGρ. (6)

3 Initial and boundary conditions
One of the main problems with model calculations the for-

mation of planets is the fact that initial conditions of the cloud
are not known. The simplest case when the initial distribution
density, and velocity are uniform. Let us look for the solution
of the problem with initial conditions

ρ(r, 0) = ρ0, (7)

v(r, 0) = 0, (8)
∂Φ

∂r
(r, 0) =

4πG

3
rρ0, (9)

and boundary conditions

∂Φ

∂r
(0, t) = 0, (10)

v(0, t) = 0. (11)

x

z

y
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Figure 1. The plot of a spherical symmetric gas-dust cloud, the gravity force
Φ is balanced by pressure force p.

4 Cole-Hopf transformation method
Many methods for solving nonlinear differential equations

were independently suggested during the last decades [18],
among these methods Cole-Hopf transformation [14, 17].
Cole-Hopf transformation provides an interesting method for
solving Burger’s equation

∂u

∂t
+ u

∂u

∂r
= ν

∂2u

∂r2
, (12)

with transformation:

u(r, t) = 2µ
ϕr
ϕ

; ϕ = ϕ(r, t), (13)

also opened up other doors to solve other non-linear partial dif-
ferential equations through similar methodologies.
Let us introduce an auxiliary function σ(r, t) = r2ρ(r, t) . In
this case, we can rewrite (4)–(6) in this way:

∂σ

∂t
+

∂

∂r
(σv) = 0, (14)

∂v

∂t
+ v

∂v

∂r
= −∂Φ

∂r
, (15)

∂

∂r

(
r2
∂Φ

∂r

)
= 4πGσ. (16)

It is an amazing fact that the equations like (14)–(16) may be
solved exactly using a trick discovered independently by Cole
and Hopf [14]. After Hopf and Cole introduced the transfor-
mation, several attempts have been made to generalised Cole-
Hopf transformation, we shall use here modified generalized
Cole-Hopf method [17, 18]. Let us we change the fluid veloc-
ity v in the following form:

v(r, t) = − θt
θr
, (17)

where θ = θ(r, t) is the auxiliary function (generalised Cole-
Hopf transformation), θt = ∂θ

∂t , θr = ∂θ
∂r .

The equivalent representation (17) has the form of the equation

θt + v(r, t)θr = 0. (18)
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Let
v = S(r)T (θ), (19)

where S(r), and T (θ) are so far undefined functions. Substitu-
tion of (19) into the left side of (15), and using (18), we obtain

∂v

∂t
+ v

∂v

∂r
= S′(r)S(r)T 2(θ). (20)

We reduce the Poisson equation (16) to the form

∂Φ

∂r
= 4πGθ. (21)

From (15), (21), and (20), we obtain

S′(r)S(r)T 2(θ) = −4πGθ. (22)

From (22), we obtain

T 2(θ) = 4πGθ, (23)

and
S′(r)S(r) = −1. (24)

Thus, we obtain
T (θ) =

√
4πG
√
θ, (25)

and
S(r) = ±

√
2
√
r−1 + c, (26)

where c is constant of integration.
From (17), (19), (25), and (26)

v(r, t) = − θt
θr

= ±
√

8πG
√
r−1 + c

√
θ, (27)

or
θt ±

√
8πG

√
r−1 + c

√
θθr = 0. (28)

By the substitution of new variable

ξ(r) =

∫
(r−1 + b)−1/2dr, (29)

to (28), it takes the form

θt ±
√

8πG
√
θθξ = 0. (30)

This is quasi-linear partial differential equation. We can solve
it by the method of characteristics [7].
Let us consider differential form

dt

1
= ± dξ√

8πG
√
θ

=
dθ

0
, (31)

from (31), we have
θ = c1, (32)

where c1 is a constant. Also

ξ ±
√

8Gλ
√
θt = c2, (33)

Combining (32), and (33) we obtain

c2 = F (c1), (34)

where F is an arbitrary function, then the general solution to
the partial differential equation (30) my be written in implicit
form

ξ ±
√

8πG
√
θt = F (θ). (35)

Let us look for the solution of the problem with initial condi-
tions:

ρ(r, 0) =
1

r2
∂θ0(r)

∂r
, (36)

where θ0(r) = θ(r, 0).
Let

θ0(r) =
ρ0
3
r3. (37)

Differentiating (37), and using (36), we find ρ(r, 0)

ρ(r, 0) = ρ0 > 0. (38)

When b = 0 in (29), we obtain

Figure 2. Graph of function θ0.

Figure 3. Graph of initial density ρ(r) = ρ0.

ξ(r) =
2

3
r

3
2 . (39)

Then we can rewrite (37) as follow

θ0(ξ) =
3ρ0
4
ξ2. (40)

We seek now the solution of (35) with initial condition (40).
By plugging initial condition (40) into (35), we get

F (θ0(ξ)) = ξ. (41)

Then

F (θ) = ±
(

4θ

3ρ0

) 1
2

. (42)

Substituting the foregoing equation into (35), we obtain that

±
(

4θ

3ρ0

) 1
2

= ξ ±
√

8πG
√
θt. (43)
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Therefore
θ − 3ρ0

4
(ξ ±

√
8πG
√
θt)2 = 0, (44)

replacing the variable ξ by its expression from (39), we finally
obtain

θ − ρ0

(
r

3
2

√
3
±
√

6πG
√
θt

)2

= 0, (45)

which is non-linear algebraic equation, we can solve it numer-
ically to find θ.
Differentiating (45) with respect to r, we find

θr =

√
3ρ0
√
r
√
θw(r, t)

(
√
θ ± ρ0λtw(r, t))

, (46)

where

w(r, t) =
r

3
2

√
3
± λ
√
θt, λ =

√
6πG. (47)

Now we can calculate density ρ (Figure 4, (Figure 5) through
function θ(r, t)

ρ(r, t) =
θr
r2

=

√
3ρ0
√
θ( r

3
2√
3
± λ
√
θt)r−

3
2

(
√
θ ± ρ0λt( r

3
2√
3
± λ
√
θt))

. (48)

Differentiating (45) with respect to t, we obtain

Figure 4. Graph of density ρ as function of t for a variety of radius r.

Figure 5. Graph of density ρ as function of r for a variety of times t.

θt =
±2ρ0λθw(r, t)√
θ ± ρ0λtw(r, t)

. (49)

Now we can calculate velocity v (Fugire 6) through function θ

v(r, t) = ± 2λ
√
θ√

3
√
r
. (50)

Figure 6. Graph of velocity v(r) for a variety of times t.

5 Derivation of the analytical solution
of the fundamental equations

As mentioned before it is not possible to find a general so-
lution of (4)–(6), so we obtain here only partial solution. The
system of equations (4)–(6) with initial condition (7)–(9), and
boundary conditions (10), and (11) dmits a solution charac-
terised by the fact that:

ρ(r, t) = ρ(t). (51)

Now we can rewrite the equation (4)–(6) as:

∂ρ

∂t
+
∂v

∂r
ρ+

2

r
ρv = 0, (52)

∂v

∂t
+ v

∂v

∂r
= −∂Φ

∂r
, (53)

∂

∂r

(
r2
∂Φ

∂r

)
= 4πGtρ(t)r2. (54)

From (52), we obtain

− ρ̇
ρ

=
∂v

∂r
+

2v

r
=

1

r2
∂

∂r
(r2v). (55)

Integrating both sides of (55) with respect to r, we obtain

v(r, t) = −r
3

ρ̇

ρ
+
c(t)

r2
, (56)

where c(t) is function, determined from the initial conditions
(8), obviously, in this case c(t) = 0, and so

v(r, t) = −r
3

ρ̇

ρ
. (57)

Differentiating the foregoing equation with respect to t, we get

∂v

∂t
=
r

3

(
ρ̇2

ρ2
− ρ̈

ρ

)
. (58)

Differentiating (57) with respect to r, we get

∂v

∂r
= −1

3

ρ̇

ρ
. (59)

By integration (54) with respect to r, we obtain

∂Φ

∂r
=

4

3
πGρr +

H(t)

r2
. (60)

Using boundary condition (10), we get H(t) = 0, and then
(60) becomes

∂Φ

∂r
=

4

3
πGρr. (61)
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From (5) and (61), we get

∂v

∂t
+ v

∂v

∂r
+

4

3
πGrρ(t) = 0. (62)

Substituting (57), (58), and (59) into (62), we obtain that ρ
satisfies the equation

3ρρ̈− 4ρ̇2 − 12πGρ3 = 0. (63)

This is second order nonlinear ordinary differential au-
tonomous equation, we will try to solve it, to find the density
ρ(t) as function of time t.
Treating ρ as independent variable, let

Ψ(ρ) =
dρ(t)

dt
, (64)

which gives

d2ρ(t)

dt2
=
dΨ(ρ)

dt
=
dΨ(ρ)

dρ

dρ

dt
=

= Ψ(ρ)
dΨ(ρ)

dρ
.

(65)

Substituting (64), and (65) into (63), we get:

3ρΨ(ρ)
dΨ(ρ)

dρ
− 4Ψ2(ρ)− 12πGρ3 = 0. (66)

This is Bernoulli’s equation, rewrite it as

2
dΨ(ρ)

dρ
Ψ(ρ)− 8Ψ2(ρ)

3ρ
= 8πρ2. (67)

Let
ϕ(ρ) = Ψ2(ρ), (68)

then (67) became

dϕ(ρ)

dρ
− 8ϕ(ρ)

3ρ
= 8πGρ2. (69)

Let

µ(ρ) = e
∫
− 8

3ρdρ =
1

ρ
8
3

, (70)

multiply both sides of (69) by µ(ρ) and integrate both sides
with respect to ρ, we get

ϕ(ρ) = 24πGρ3 + aρ
8
3 , (71)

where a is an arbitrary constant. But ϕ(ρ) = Ψ(ρ)2, then we
get

Ψ(ρ) = ±
√

24πGρ3 + aρ
8
3 . (72)

Substitute back for Ψ(ρ) = dρ(t)
dt :

dρ(t)

dt
= ±

√
24πGρ3 + aρ

8
3 . (73)

Applying the initial condition (7), (8), and (57), we obtain

a = −24πGρ
1
3
0 . (74)

Then we can rewrite (73) as

dρ(t)

dt
= ±
√

24πGρ
4
3

√
ρ

1
3 − ρ

1
3
0 . (75)

Integrate both sides with respect to t:∫
dρ

ρ
4
3

√
ρ

1
3 − ρ

1
3
0

= ±
√

24πGt+ b, (76)

where b is an arbitrary constant. Evaluating the integral on the
left-hand side of (76), we obtain

3

(
6
√
ρ0
√

3
√
ρ− 3
√
ρ0

3
√
ρ + arctan

(√
3
√
ρ− 3
√
ρ0

6
√
ρ0

))
√
ρ0

=

= ±
√

24πGt+ b.

(77)

Applying the initial condition (7), we find that b = 0. Hence,

Figure 7. Graph of the density ρ(t) as function of time t.

we have finally

3
6
√
ρ0
√

3
√
ρ− 3
√
ρ0

3
√
ρ

+ 3 arctan

(√
3
√
ρ− 3
√
ρ0

6
√
ρ0

)
=

= ±
√

24πG
√
ρ0t.

(78)

From (57), and (75) it follows that

Figure 8. Graph of velocity v(r) for a variety of times t.

Figure 9. Graphs of velocity v(t) for a variety of radius r.
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v(r, t) = −
√

24πG

3
rρ

1
3

√
ρ

1
3 − ρ

1
3
0 . (79)

The equation (78) is an implicit function, which is not defined
explicitly. The MATHEMATICA software package, can be
used to draw the implicit function curve.
Using the equations (78) and (79), we can plot velocity v as a
function of time t and as function of radius r.

6 Results and discussion

The Mathematica package has been used to solve the non-
linear algebraic equation (45) numerically, and to generate a
plot of the density function (48) as a function of time t.
It can be observed from Figure 4, and Figure 7, that the density
ρ inside the cloud increases with the increasing value of the
time t.
Figure (6) showed graphs of velocity v(r) for a variety of time
t which have been found by the Cole Hopf transformation
method. Figure (5) showed graphs of the density as a func-
tion of radius r for a variety of time t which have been found
by the Cole-Hopf transformation method. It can be noted from
that the density ρ(r) for a variety of time t is very near to ini-
tial density ρ0. Figure (8) showed graphs of velocity v(r) for
a variety of time t, and Figure (9) showed graphs of velocity
v(t) for a variety of radius r which both have been found by
the analytical method.
Figure (10) showed graphs of the density, comparing results
obtained using the Cole-Hopf transformation method with the
analytical method. Figure (11) showed graphs of the velocity
v as function of radius r, comparing results obtained using the
Cole-Hopf transformation method with the analytical method.
Figure (12) showed graphs of the density v as function of time t
for different values of the initial density ρ0. It can be observed
from the figure, that the density inside the cloud increase with
the increasing value of initial density ρ0.

Figure 10. Obtained solutions for density ρ as a function of time t, by the
Cole-Hopf transformation method and by the analytical method.

7 Conclusion and future work

We investigated the motion of the spherically symmetrical
compressible fluid flow of self-gravitating dust-gas cloud. We
have tried to find a solution for the system of equations pre-
sented in (4)–(6). In the case when p = 0, i.e., the pressure

Figure 11. Obtained solutions for velocity v as a function of radius r, by the
Cole-Hopf transformation method and by the analytical method.

Figure 12. Graph of the density ρ(t) as function of time t for different values
of the initial density ρ0

in the medium is zero, we found the particular analytical so-
lutions with the help of analytical method and special initial
condition.
In the present paper, we have applied two methods to obtain
solutions to equations of dynamics gravitating system of a gas-
dust cloud. Firstly, we investigated the problem using the Cole-
Hopf, which reduces the problem from non-linear partial dif-
ferential equation into an ordinary differential equation which,
in turn, can be solved effectively. Secondly we discussed the
analytical method which allows us to get an exact analytical
solution to the problem.
The validity of the result which obtained by the Cole-Hopf
transformation method is verified by the result obtained by the
analytical method. Also, our results are similar to those solu-
tions obtained by several authors [3, 4, 8] but with similarity
technique.
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