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Abstract  A single shaft dual turbine drive, for a marine 
propulsion system, is considered. Distributed-lumped 
analysis is used in the dynamic response prediction. This 
enables the relatively concentrated assemblies to be included 
as lumped, point-wise representations. The propulsion shaft 
is incorporated as a dispersed inertia and stiffness model. 
Multivariable, least effort regulation is employed to achieve 
the control required. The performance of the closed-loop 
system following reference input and load disturbance 
changes is evaluated and the drive shaft speed and twist 
angle response transients are computed. 
Keywords  Marine, Drive, Propulsion, System, Control 

1. Background/Objectives and Goals
Low and high power engines are often used, for marine 

system propulsion, to accommodate widely varying load 
conditions whilst minimizing energy dissipation, cost 
expenditure and emissions. A variety of applications 
including hybrid internal combustion/electric motor drives, 
cruise and manoeuvring gas turbine propulsion, and 
diesel-electric power transmissions may be configured in this 
way. 

Often a single prime mover is used to obtain the required 
driving torque, with some form of automatic transfer to the 
low or high power unit following load changes. As a 
consequence, during high speed operations the high power 
prime mover provides the whole of the propulsion with the 
remaining unit idling, or passively motoring on the drive 
shaft. 

In principle, both units could be used to provide the 
maximum torque requirement in these applications. 
However, the difficult issue of load sharing between the two 
prime movers must then be addressed. 

This consideration is complicated owing to the changing 
load demands on the system which prevail throughout 
operational duty cycles. The use of epicyclic gearing and/or 
power electronics may be used to adjust dynamic loading 
imbalances. However, these are costly solutions which also 
attract substantial increases in complexity, mass/inertia and 
maintenance costs, as significant penalties. 

An alternative approach would be to treat the tandem, 

power transmission design problem as a directly coupled 
drive with the use of multivariable feedback, as in [1], to 
enforce the required speed/torque and shaft twist regulation. 

An appropriate control strategy here would be to 
simultaneously regulate the transmission shaft speed and 
twist angle-outputs, with both engines/motors supplying 
power. This would lead to both drive units operating in 
concert, in accordance with the required loading and speed 
changes, without the use of complicated electronic switching 
or mechanical gearing. 

As part of the design, the employment of an accurate drive 
shaft model for the propulsion system under consideration is 
necessary. Essentially, the spatial dispersion of this element 
will be included in the modelling and regulator design 
exercise, as in [2]. 

The shaft forward and stern end, shaft twist angle 
difference, required in the feedback regulation system, will 
be provided by strain gauge measurements with electrical 
signal transmission, via shaft mounted slip rings. Speed 
transducers and integrators will be used for this purpose, as 
shown herein. 

Equally, to ensure cost-effective, efficient implementation 
a least effort multivariable design strategy will be adopted. 
This procedure uses only passive control elements whilst 
minimising the generation of heat, wear and operating costs 
providing thereby the efficient regulation required, for 
successful implementation. 

In the marine applications included in this submission are 
particularly important. Effectively, the propulsion system 
proposed would allow single and/or dual drive 
configurations to be employed, with the engine unit or units 
operating at near to full load capacity. This would avoid the 
fuel-expensive, part-load performance, exhibited by gas 
turbine drive systems, for example, which have hitterto, 
restricted applicability. 

2. Methods
In this exercise the dual gas turbine drive system, shown in 

Figure 1, will be considered. All of the inertias and frictional 
coefficients for the GT engines are referred to the main drive 
shaft, as in [3]. The prime mover inertia and combustion 
dynamic effects can be represented by simple, exponential 
delays and gain terms, as in [4] and [5]. 
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Figure 1.  Dual Gas Turbine Propulsion System 

Modelling the drive shaft as a distributed parameter 
element, as shown in [6] with each prime mover, rotational 
inertia and gearing represented by lumped elements, at each 
end of the drive shaft, would be appropriate. The Laplace 
transformed model for this system, with torque inputs T1(s) 
and T2(s), is: 
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In equation (1): 
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where in equation (2): 

1 1 1(s) s GG = ρ . 

Then following the inversion of equation (1): 
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where in equation (3): 
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and in delay form since: 
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With the inclusion of the GT fuel pump and combustion 
dynamics, see for example [7], of approximately: 

( )1 1 1 1T (s) g v (s) s 1= τ +           (6) 

And 

( )2 2 2 2T (s) g v (s) s 1= τ +         (7) 

the distributed – lumped system model becomes, in terms of 
percentage input and output changes: 
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Hence: 

( ) ( )T T
1 2 s 1 2(s), (s) (s) v (s), v (s)ωω  = G     (9) 

In this application the prime mover time constants are 
approximately equal. Hence if: 

1 2 0.05 secτ = τ = τ =  
and if the power output of the high power unit is 
approximately twice that of the low power unit then in 
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equation (9): 
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In order to regulate shaft speed in this application, a 
control strategy aimed at attaining a cooperative power drive 
wherein the gas turbines respond in concert, to achieve the 
demanded outputs required. To do this the outputs to be 
controlled could be selected as the shaft twist angle (s)φ
and the shaft speed 2 (s)ω . A transformation of the system 
model, given by equation (9), is necessary to achieve this. 

Since: 

( )1 2(s) (s)(s) s
ω −ωφ =

 
then: 

( ) ( )T T
2 s 1 2(s), (s) (s) (s) v (s), v (s)φ ω = N G  (11) 

where in equation (11) for percentage input and output 
changes: 
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where: 

max100 (s)θ = φ  
where here the design limit for

max (s) 0.1 rads, and sinceφ =  

1max 2maxv (s) v (s) 100 volts, = = and a 1% voltage 
change results in a 1% torque change, in equation (10). 

Also, 1max 2max(s) (s) 100 rads/secω = ω ≅ , with 
normal operational speed limited to 50% maximum in this 
marine propulsion system application. With this 
transformation the output response from equation (11), 
following input step changes of 1%, are all over damped with 
time constants of 1.25 sec. 

The inner loop control law, for this application, as shown 
in [8], is: 

( ) ( )( )T T
1 2 2v (s), v (s) (s) (s) (s) (s), (s)= − φ ωk r h  (12) 

and the block diagram representation is shown in figure 2.  

 
Figure 2.  Inner Loop Block Diagram 
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Hence: 
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In equation (13) the determinant required is: 
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The inner product, in equation (14), may be written as: 
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Putting: 
2 1k nk= and with the low frequency condition 

that: 
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then since (s) 0υ ≠ , in equation (15)  
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where in equation (16) the coefficients 1 2 3,  and λ λ λ
become the weights for the characteristic equation: 

1 (s) 0+ υ λ =                 (17) 

The solution for the first two equations, of equation (16) 
is: 
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so that since 1 2J  and J  are very small, in comparison to 

1ζ then: 
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and 3λ can be calculated following the establishment of 

1 2h (s) and h (s) to satisfy the third equation, of equations 
(16). The simplest solution here would be to let: 

1 2 ,λ = λ = λ in equation (19) so that 2sh (s) would be 
zero and: 
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Although the gain ratio n, in equation (15), may be 
selected arbitrarily, to achieve the optimum, least effort 
controller requires the minimisation of the functional: 

( )TT 1 1J (n) (n)− −= λ Q Q λ             (21) 

where in equation 21: 
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and from equation (18): 
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Since for a particular application 1 2 1J , J  and ζ , and Q(n), 
will be known, the minimisation of the J functional enables 
the gain ratio n, where 2 1k nk= , to be determined from the 
optimisation process. 

Consequently, the relative stability condition for the inner 
loop can now be assessed from equation (17) which results 
in: 

( )
( )( )

1
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1 1 2 3 1w (s) 1 s g
1

s s 1 (s)

 λ − + λ + λ 
  ≠ −

τ + ∆
     (22) 

In the frequency domain, with s = iω the function of 
equation (22) must leave the -1,0 point to the left for: 
0 < ω< ∞   since this system is open-loop stable. 

3. Results 
In this illustrative application study a marine propulsion 

system which has a drive shaft of length l1, with polar second 
moment of area of sJ , will be considered. The arrangement 
of the system is as shown in fig. 1, where there are relatively 
lumped inertias and bearing frictions, referred to the shaft, at 
the stern and at the forward end. The system parameters are: 
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2 2 6 4
1 s
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3
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− −

−

= × = ×
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From these values, as shown by equation (2): 

( )1 s 1 1J G 15.3275ζ = ρ =        (23) 

( )41
1

1
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The time constant τ of the prime movers for illustration 
purposes is: 

 1 1 1 2 2 20.05,  (s) J s c  and (s) J s cτ = γ = + γ = +  (25) 

The first step in the design procedure is to establish the 
inner, closed loop controller details, as this loop is used to 
adjust the system dynamics. The calculation for the optimum 
gain ratio n can be determined from equation 21 which when 
evaluate for this system becomes: 

( )TT 1 1J (n) (n)− −= λ Q Q λ  

( )( )
( )

22 6
1

2 4

1 n g 10
J

12n 15 10

−

−

 + λ × =
− ×

 (26) 

The graph of function (26) is shown in fig. 3, where, since 
g1 does not affect the value of n, minimising J, this has been 
included as unity. Clearly, the minimum value of J occurs 
when: 

n = - 0.8                   (27) 

 
Figure 3.  Performance Index J against n 
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Figure 4.  Closed Loop Configuration for Analysis 

With this value of n and following the substitution of 

1 2 1 2J , J ,c  and c , with the selection of: 1 2λ = λ = λ , to 
simplify the inner-loop feedback, equation (18) results in: 

3 1 2 1 1 2

3

g c h 2c nh
4.06

λ = +
λ = λ  

Hence, the (s)υ λ  function of equation 17 is: 
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where (s) is given by equation (3).
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t + ∆

∆

    (28) 

A Nyquist diagram for equation (28) with conservative 
gain and phase margins, acknowledging thereby the 
inclusion of the finite time delays and for: 

λg1 = 1000 could be drawn.  
From equation (19), since: 

2 1

1 2

h 0 and h 4.06, with n 0.8,  and with 
k 1,and  k 0.8

= = = −
= = −  

this fully defines the feedback concluding the inner-loop 
design. 

To complete the outer-loop design the pre-compensator P 
must be computed. Since: 

s s 0
(0) (s) (s)

→
=G N G  

and with an initial selection of a steady state matrix to allow 
0.1% steady state output coupling: 

s
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then since: 
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The pre compensator can be derived as shown in [8], as: 
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evaluation yields: 
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so that for f = 0.7, for example: 
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,

31.5193 33.3727
 
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P

 
Figure 4 shows the final closed-loop configuration for 

analysis purposes. For implementation purposes, a 
conventional pre and feedback compensator structure may 
now be determined. Hence, 

K(s) = P and for f = 0.7 

[ ]1
2

1 0.7763 0
(s) 4.06 0 0.7

0.8 0.027 0.7
−    

= + =    − −    
H P I

 
To demonstrate effectiveness the performance of the 

closed-loop system following a reference input step change 
on the speed demand r2(t) will be investigated, for three 
values of outer loop gain, f = 0.7, 0.8 and 0.9. Thereafter, for 
the same values of outer-loop gain the disturbance 
suppression and recovery characteristics of the system will 
be determined, with the imposition of step disturbances on 
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the shaft angular velocity output ω2(t). 
In fig. 5 and 6 the response of the system following 

reference input, step changes on r2(t) are shown. Fig. 5 
exhibits well behaved, monotonic transients with the speed 
of response improving, for increasing values of outer loop 
feedback gain, f. The distributed parameter shaft dynamics 
are shown in figure 6 where the oscillatory, shaft twist angle 
characteristics increase substantially, as f increases, with 
rising energy transmission and hence shaft torsional, 

transient excitation. 
In figs. 7 and 8 the fuel flow change to the forward and 

stern GT engines, respectively, are shown following a step 
demand on r2(t). Here, the stern end GT is shown to support 
the major part of the load change with the forward end GT, 
containing the shaft twist angle by executing the high 
frequency oscillations depicted in figure 7, allowing the 
smooth power transition, illustrated by figure 5. 

 
Figure 5.  % Change in Shaft Angular Velocity Following a 1% Step Input Reference Change on r2 (t) 
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Figure 6.  % Change in Shaft Twist Angle Following a 1% Step Input Reference Change on r2 (t) 

 
Figure 7.  % Change in Fud Flow to Fwd End GT Following a 1% Step Input Reference Change on r2 (t) 
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Figure 8.  % Change in Fud Flow to Stern End GT Following a 1% Step Input Reference Change on r2 (t) 

The disturbance suppression performance of the system is also pleasing, as shown in fig. 9 where the system off-set is 
reduce with increasing values of outer-loop gain f. Fig. 10 indicates that the shaft twist angle change reduces to zero within 
approximately 0.5 seconds with a similar build-up of oscillatory behaviour, to that exhibited following reference input signal 
changes. 

To counter load changes, fig. 11 shows that there is a permanent increase in fuel flow to the forward end GT.  

 
Figure 9.  % Change in Shaft Angular Velocity Following a 1% Step Disturbance Change on Shaft Velocity ω2 (t) 
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Figure 10.  % Change in Shaft Twist Angle Following a 1% Step Disturbance Change on Shaft Velocity ω2 (t) 

Equally, figure 12 shows a permanent increase in fuel flow to the stern end GT without the rapid transient excitation which 
the smaller, forward end GT exhibits. 

 
Figure 11.  % Change in Fuel Flow to Fwd End GT Following a 1% Step Disturbance Change on Shaft Velocity ω2 (t) 
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Figure 12.  % Change in Fuel Flow to Stern End GT Following a 1% Step Disturbance Change on Shaft Velocity ω2 (t) 

4. Conclusions 
The difficulty in operating with tandem drives is that 

imbalance often occurs with one prime mover “motoring” on 
the drive shaft. For this reason, separate low and high power 
systems are usually used. In particular, in warship 
applications the high power system is usually provided by 
large capacity gas turbine units, driving the port and 
starboard shafts, respectively, whilst the smaller cruise drive 
may employ engines of less than 50% of this capacity. 

As, shown herein, the initial analysis reflects the 
complexity of the situation with the system input-output 
matrix model exhibiting numerical singularity at low 
frequencies and with extremely small model determinant 
values at all frequencies. 

This arises from the rigidity of the shaft model and from 
the elementary observation that the steady state running 
speed, at each end of the shaft, is identical. To overcome this 
design difficulty a transformation was proposed enabling the 
basic model to be used to compute shaft twist, as well as the 
stern end shaft speed. This system shaft speed and twist 
angle, matrix model is well posed (regular) enabling the 
prediction of steady state conditions in the design/analysis 
exercise. 

In particular, the requirement for both speed and twist 
angle control could now be accommodated within the inner 
and outer loop design structure employed, for least effort 
regulation. The inputs could also be coupled if desired, so 
that a demanded speed change would automatically allow a 

prescribed increase in the steady state shaft twist angle, in 
accordance with normal running conditions. 

Following the least effort design procedure, the computed 
response predictions for step input changes, on the shaft 
speed, reference input, were shown to illustrate effectiveness. 
The regulated response of the system, as shown from the 
transients, improves without exciting non-minimum phase 
transients, overshoot or settling time problems. 

Finally, the focus of the study was mainly concerned with 
the desirability of employing a tandem drive, rather than 
separate low and high power propulsion units. As shown 
herein, this is achievable providing accurate modelling and 
an efficient feedback regulation strategy is imposed. 

This gives the clearly identifiable advantages 
demonstrated. These include improvements in steady state 
and dynamic performance, operating efficiency, reduced 
maintenance cost all of which are important in marine 
operations. 
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