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Abstract  The classical Fisher-Snedecor test which 
compares several population means depends on the 
underlined assumptions which include; independent of 
populations, constant variance and absence of outlier among 
others .Arguably the source of violation of some of these 
assumptions is the outlier which lead to unequal variances. 
Outlier leads to inequality in the variances of the populations 
which consequently leads to the failure of the classical-F to 
take correct decision in terms of the null hypothesis. A series 
of robust tests have been carried out to ameliorate these 
lapses with some degrees of inaccuracies and limitations in 
terms of inflating the type 1 error and the power of different 
combination of parameters at various sample sizes while still 
uses the conventional F-table. This study focuses on 
developing  robust F-test called exponentiated F test with 
the introduction of one shape parameter to the conventional 
F-distribution capable of taking decisions on ANOVA that 
are robust to the existence of outlier. The performance of the 
robust F test was compared with the existing F-tests in the 
literature using the power of test. Real life and simulated data 
were used to illustrate the applicability and efficiency of the 
proposed distribution over the existing ones. Experimental 
data with balanced and unbalanced design were used with 
populations sizes k=3 and k=5 were simulated with 10000 
replications and varying degrees of outliers were ejected 
randomly. The results obtained indicate that the Proposed 
Exponentiated-F test is uniformly most powerful than the 
conventional-F tests for analysis of variance in the presence 
of outlier and is therefore recommended for use by 
researchers. 
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1. Introduction 
The classical F-test to compare several population means 

depends on the assumption of constant variance of the 

population and the normality, Fisher, Ronald [11]. When 
these assumptions, especially the equality of variance are 
violated, the classical F-test lacks ability to take correction 
decision. There have been series of robust tests in the 
literature which include the Welch test [27], Scott-Smith 
[24], Brown-Forsythe [5], Weerahandi.s Generalized F test 
[26], Kenward Roger test by Heskey [17], Generalized F 
test[23], Parametric Bootstrap test by Krischnamoorthy [19] 
among others to overcome this problem but these tests still 
show some degrees of inaccuracies in terms of inflating the 
type 1 error and powers in different combinations of 
parameters and various sample sizes. 

1.2. One-way ANOVA Assumptions 

Considering testing the model given as 

ijjij eY ++= τµ ),(~ 2σµNeij ai ...,,2,1=
bj ...,,2,1=                (1) 

Like any statistical test, one-way ANOVA has several 
assumptions. However, some of these assumptions are 
stringent requirements, while others can be waived. 

1.3. Outliers in Overview 

• An outlier is a data value that is in some way 
inconsistent with the rest of the data set. 

• Outliers in the residuals- an observation for which 
the residual is more extreme than would be expected 
from random variation alone 

• The identification of an outlier may change with the 
proposed model. 

Reasons for Outliers 
1) Problems with the experimental procedure 
2) Errors in the recording, transcription or data input 

procedures 
3) An incorrect or incomplete model specification 
4) A genuine observation that is incompatible with the 

rest 
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Effects of removing outliers: 
 Could be negligible. 
 Might affect parameter estimates. 
 Might increase/decrease ResMS. 

 What to do? 
 Check original sources and correct erroneous values. 
 Repeat analysis with the offending point(s) removed. 
 Assess effect on final conclusion, parameter 

estimates, etc. If the results are markedly different 
than one may need to report both analyses. 

 Warning! 
 Do not discard outliers without careful 

consideration, as data are often expensive to obtain. 
 An outlier might be the most important observation 

in the study. 

This study focuses on developing generalized 
distributions that are capable of handling data that are 
non-normal. Also, attempts will be made to develop Robust 
F –test called exponentiated F test that is less sensitive to any 
serious violations due to outliers\. 

1.4. What Happens If You Violate the Assumption of 
Equal Variances? 

For hypothesis tests like ANOVA, you set a significance 
level. The significance level is the probability that the test 
incorrectly rejects the null hypothesis (Type I error). This 
error causes you to incorrectly conclude that the group 
means are different. 

If you set the significance level to 0.05, the observed error 
rate is also 0.05. 

The greater the difference between the target and actual 
error rate, the more sensitive one-way ANOVA is to 
violations of the equal variances assumption. 

1.5. Possible Alternatives If Your Data Violates One-way 
ANOVA Assumption 

 Transformations: correcting non-normality and 
unequal variances by transforming all the data values  

 Nonparametric tests: dealing with non-normality 
by employing a test that does not make the normality 
assumption of the one-way analysis of variance 

“The Kruskal–Wallis test does not assume that the data are 
normally distributed; that is its big advantage. If you're using 
it to test whether the medians are different, it does assume 
that the observations in each group come from populations 
with the same shape of distribution, so if different groups 
have different shapes (one is skewed to the right and another 
is skewed to the left, for example, or they have different 
variances), the Kruskal–Wallis test may give inaccurate 
results “(Fagerland and Sandvik [9]). 

Heteroscedasticity is one way in which different groups 

can have different shaped distributions. If the distributions 
are normally shaped but highly heteroscedastic, you can use 
Welch's t-test for two groups, or Welch's anova for more 
than two groups. If the distributions are both non-normal and 
highly heteroscedastic, I don't know what to recommend. 

1.6. Parametric Way Out 

The main idea of approximate tests is to possibly find a 
coefficient, say m and degrees of freedom, say v such that 

),1(~* vkFmFF −=            (2) 

The main focus of the work is to develop a generalized 
F-Statistic for testing the equality of means when there is 
violation of assumptions due to outlier. 

2. Classical F Test and Existing Robust F 
Tests 

2.1. F-Test /ANOVA Test of Equality of Means 
Consider b mutually stochastically independent random 

variables having normal distributions with unknown means 

bµµµ ...,,, 21  respectively and unknown but common 

variance .2σ Let ajjj XXX ...,,, 21 represent a random 

sample of size a from the normal distribution with mean jµ

and variance ....,,2,1.2 bJ =σ  
In testing the hypothesis  

1,...bi  equal are s' allnot  :
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A likelihood ratio test is as follows: 
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The log-likelihood functions are  
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We then differentiate (8) and (9) with respect to jµµ,

and 2σ  and set the resulting expression to zero, we obtain 
the maximum likelihood estimate of ., 2σµµ andj  
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Thus, the Fisher Snedecor statistic is derived as 
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2.2. Existing Robust Tests of Equality of Means under 
Violation of Assumptions 

Welch’s Test 
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Where ik , iS  and in  represent number of populations 
to be compared, subgroup variance and subgroup population 
size respectively. 

The Scott-Smith Test 
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The Brown-Forsythe Test 
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If H0 is true, the dist of VFis K ,1−β  
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Kenward-Roger Test 
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Denote 
,2 2∗
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 then for the heteroscedasticity 

ANOVA, the Kenward-Roger approximation takes form. 
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Parametric Bootstrap Test 

This allows resampling from a distribution under H0 
whose parameters are the sample variances. 
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3.3. Proposed Exponentiated F-Distribution and F-Tests 

Let X be a random variable with F-distribution, its density 
and distribution functions are respectively defined as   
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Using the function previously used by Nadarajah and Kotz 
[21], called the exponentiated link function as follows 

[ ] )()()( 1 xfxFcxg c−=            (14) 

If we put (12) and (13) in (14), we have the proposed 
exponentiated-F distribution as 
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As for the proposed exponentiated F test, it is derived as 
follows 
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Firstly, we obtain exponentiated normal distribution found 
using (16) and (17) in (14)  
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Taking the log of likelihood functions in (19) and 

differentiating with respect to ,σµ and we have 
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The proposed exponentiated F-statistic is 
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4. Applications 

We consider the balanced and unbalanced cases from 
smaller to larger sample sizes for k=3 and k=5 for 
comparing the proposed exponentiated-f test and other 
Robust F tests in the literature. Outliers are ejected to a 
normal population at both lower and higher rate creating 
non constant variances of different forms.  

Calculations will be made of the rejection rate of each 
testing procedure and compared with the nominal level 0.05 
when the means are all equal. The type I error rates of the 
CF, WT, SS, BF,KR,PB and the proposed Exponentiated-F 
tests are estimated by the proportion of test statistic that 
exceed the critical values calculated from the distributions. 
Simulation consisting of 10000 replications was run for 
each of the sample sizes and parameter configurations. The 
results are shown in the tables below 

Table 1.  Simulated Type I Error Rates When K = 3 For Equal Sample Sizes (3,3,3) 

ni 2
iσ  C F (1925) WT 

(1951) SS (1971) BF 
(1974) 

KR 
(1992) 

PB 
(2007) 

PROPOSD 
EXOP-F 

3,3,3 

1,1,1 0.0526 0.0466 NA 0.0403 0.0203 0.0400 0.0039 

100,100,100 0.0493 0.0226 NA 0.0491 0.0130 0.0405 0.0031 

1,100,100 0.0777 0.0741 NA 0.0471 0.0000 0.0076 0.0015 

100,1,100 0.0772 0.0675 NA 0.0484 0.0000 0.0070 0.0000 

100,100,1 0.0734 0.0720 NA 0.0136 0.0000 0.0064 0.0008 

100,1, 1 0.1467 0.0472 NA 0.0464 0.0000 0.0575 0.0116 

1, 100,1 0.1545 0.0536 NA 0.0505 0.0303 0.0576 0.0109 

1,1, 100 0.0225 0.0648 NA 0.0507 0.0294 0.0584 0.0118 

Table 2.  Simulated Type I Error Rates When K = 3 For Equal Sample Sizes (5,5,5) 

ni 2
iσ  CF (1925) WT (1951) SS (1971 BF 

(1974) 
 KR 

 (1992) 
PB  

(2007) 
PROPOSED 

EXPO-F 

5,5,5 

1,1,1 0.0514 0.0448 0.0398 0.0489 0.0446 0.0767 0.0000 

100,100,100 0.0502 0.0453 0.0339 0.0486 0.0379 0.0557 0.0032 

1,100,100 0.0737 0.0601 0.9434 0.0505 0.0451 0.1002 0.0036 

100,1,100 0.0740 0.0612 0.9416 0.0516 0.0476 0.1010 0.0031 

100,100,1 0.0719 0.0530 0.9405 0.0524 0.0510 0.1055 0.0028 

100,1, 1 0.1254 0.0574 0.9389 0.0586 0.0510 0.0886 0.0500 

1, 100,1 0.1210 0.0559 0.9457 0.0549 0.0476 0.0813 0.0495 

1,1, 100 0.1205 0.0543 0.9438 0.0585 0.0485 0.0825 0.0469 

Table 3.  Simulated Type I Error Rates When K = 3 For Equal Sample Sizes (7,7,7) 

ni 2
iσ  C F (1925) WT (1951) SS 

(1971) BF (1974)  KR (1992) PB  (2007) PROPOSED 
EXPO-F 

7,7,7 

1,1,1 0.0481 0.0430 0.0296 0.0440 0.0454 0.0764 0.0014 

100,100,100 0.0499 0.0505 0.0327 0.0480 0.0475 0.0679 0.0026 

1,100,100 0.0651 0.0516 0.9482 0.0434 0.0439 0.0835 0.0031 

100,1,100 0.0666 0.0521 0.9450 0.0550 0.0485 0.0914 0.0032 

100,100,1 0.0644 0.0552 0.9459 0.0547 0.0446 0.0825 0.0082 

100,1, 1 0.1029 0.0575 0.9533 0.0677 0.0486 0.0782 0.0544 

1, 100,1 0.1040 0.0481 0.9516 0.0644 0.0461 0.0727 0.0488 

1,1, 100 0.1053 0.496 0.9504 0.0656 0.0498 0.0786 0.0500 
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Table 4.  Simulated Type I Error Rates When K = 3 For Equal Sample Sizes (10,10,10) 

ni 2
iσ  C F (1925) WT (1951) SS(1971 BF(1974)  KR (1992) PB  (2007) EXPO-F 

10,10,10 

1,1,1 0.0479 0.0497 0.0319 0.0479 0.0474 0.0625 0.0007 

100,100,100 0.0497 0.0503 0.0304 0.0513 0.0480 0.0652 0.0008 

1,100,100 0.1033 0.0498 0.9517 0.0558 0.0465 0.0790 0.0013 

100,1,100 0.0691 0.0533 0.9515 0.0529 0.0472 0.0785 0.0041 

100,100,1 0.0966 0.0535 0.9535 0.0519 0.0484 0.0797 0.0023 

100,1, 1 0.1420 0.0532 0.9582 0.0728 0.0500 0.0710 0.0440 

1, 100,1 0.0998 0.0526 0.9554 0.0664 0.0490 0.0652 0.0444 

1,1, 100 0.0962 0.0511 0.9561 0.0666 0.0464 0.0660 0.0432 

Table 5.  Simulated Type Error Rates When K = 5 and Equal Sample Sizes 

ni 2
iσ  C F 

(1925) 
WT 

(1951) SS (1971 BF 
(1974)  KR (1992) PB (2007) EXPO 

3,3,3,3,3 

100,100,100,100,100 0.0527 0.0663 NA 0.0142 NA 0.0592 0.0069 

100,100,100,100,1 0.0683 0.1191 NA 0.0275 NA 0.0001 0.0134 

100,1,1,1,1 0.2009 0.0741 NA 0.0453 NA 0.0581 0.0157 

5,5,5,5,5 

1,1,1,1,100 0.1717 0.0605 0.9308 0.0649 0.0398 0.0939 0.0090 

1,100,100,100,100 0.0631 0.0741 0.9291 0.0445 0.0454 0.1188 0.0131 

100,100,100,100,100 0.0500 0.0507 0.0530 0.0363 NA 0.0664 0.0147 

7,7,7,7,7 

100,100,100,100,100 0.0529 0.0506 0.0502 0.0404 0.0371 0.0697 0.0213 

100,100,1,100,100 0.0646 0.0665 0.9376 0.0582 0.0472 0.0957 0.0189 

1,1,1,1,100 0.1527 0.0553 0.9384 0.0815 0.0388 0.0789 0.0163 

Table 6.  Simulated Type 1 Error Rates When K = 3 and Unequal Sample Sizes 

ni 2
iσ  C F 

(1925) 
WT 

(1951) SS (1971) BF (1974) KR (1992) PB 
(2007) 

PROPOSED 
EXPO-F 

2,3,3 

100,100,100 0.0461 0.1453 NA 0.0335 0.0375 0.0477 0.0165 

100,100, 1 0.0118 0.0728 NA 0.0324 0.7025 0.8714 0.0485 

100,1,1 0.3190 0.1108 NA 0.0450 0.0918 0.1029 0.1571 

3,5,7, 

100,100,100 0.0518 0.2899 NA 0.0363 0.0317 0.0921 0.0000 

100,100,1 0.1476 0.2290 NA 0.0402 0.0491 0.1128 0.0002 

100,1,1 0.3357 0.2540 NA 0.0498 0.0541 0.1167 0.0449 

5,7,10 

100,100,100 0.0485 0.3470 0.9531 0.0446 0.0426 0.0766 0.0000 

100,100,1 0.1273 0.3138 0.9561 0.0463 0.0554 0.1098 0.0000 

100,1,1 0.2322 0.3354 0.9472 0.0544 0.0513 0.0946 0.0013 

4,8,15 

100,100,100 0.0507 0.3514 0.0306 0.0374 0.0487 0.0895 0.0000 

100,100,1 0.2134 0.3009 0.9578 0.0330 00.513 0.01210 0.0000 

100,1,1 0.3864 0.3203 0.9355 0.0536 0.0548 0.1148 0.0063 
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Table 7.  Simulated Type 1 Error Rates When K = 5 and Unequal Sample Sizes 

ni 2
iσ  CF 

(1925) 
WT 

(1951) 
SS 

(1971 
BF 

(1974) 
KR 

(1992) 
PB  

(2007) 
PROPOSEE

XP-F 

2,2,3,3,5 

100,100,100,100,100 0.0514 0.0112 NA 0.0559 0.0000 0.0151 0.0000 

100,100,100,100,1 0.1486 0.0273 NA 0.0044 0.0000 0.0125 0.0000 

100,1,1,1,1 0.4256 0.3258 NA 0.0384 0.0046 0.0106 0.0455 

4,4,6,6,10 

100,100,100,100,100 0.0488 0.0308 0.0419 0.0505 0.0244 0.0645 0.0000 

100,100,100,100,1 0.1258 0.0671 0.9276 0.442 0.0001 0.0001 0.0000 

100,1,1,1,1 0.2999 0.2703 0.9166 0.0541 0.0000 0.0000 0.0032 

3,5,7,10,10 

100,100,100,100,100 0.0509 0.0191 0.0258 0.0504 0.0387 0.0769 0.0000 

100,100,100,100,1 0.1010 0.0428 0.9329 0.0457 0.0000 0.0000 0.0000 

100,1,1,1,1 0.4692 0.4328 0.9082 0.0505 0.0002 0.0002 0.0158 

Adepoju, 

5. Conclusions 
The available tests for the one-way ANOVA model with 

heteroscedastic error variances haveserious type I error 
problems that have been overlooked; this has been pointed 
out by Dajani [7]. In this paper, we have developed the 
Exponentiated-F test as an alternative to Classical F test and 
compared to some of the existing Robust F tests in the 
literature which include: the Welch test [27], the Scot-Smith 
test [24], the Brown-Forsythe test [5], the Kenward Roger 
test [17] and Parametric Bootstrapping test by 
Krischnamoorthy et al [19]. 

For a range of choices of the sample size and parameter 
configurations, we have investigated the performance of the 
above tests using Monte Carlo simulation. In terms of 
controlling the Type I error rate, one can conclude in strong 
term that the Proposed Exponentiated-F test is the only 
procedure that performs satisfactorily, regardless of the 
sample sizes, values of the error variances, and the number 
of means being compared both in the presence and absence 
of outlier. The Kenward-Roger test came a distant second. 
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