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Abstract  In this work, finite element method based on 
Lagrangian formulation is used for obtaining the equations 
of motion of the double link flexible revolute-jointed robotic 
manipulator. Both the links are considered as  
Euler-Bernoulli beams. A parametric study is carried out for 
the double link flexible robotic manipulator through linear 
modeling technique. A comparative study for dynamic 
response is carried out for the uniform beam manipulators 
under various types of excitations. 
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1. Introduction 
In conventional robotic system, links are rigid giving 

small static deflection and hence it is possible to obtain high 
positional accuracy. However, most of the power is used to 
overcome the inertia of the system. On other hand, 
lightweight and large dimension robotic manipulators have 
become popular due to their higher manipulation speed, less 
weight/overall cost, transportability, better energy 
consumption, enhanced payload capacity etc in comparison 
to conventional robotic system. There is a wide range of 
applications of such new generation robotic systems in many 
areas nowadays. It is desired to design lighter robots to carry 
out heavier payloads as well as to operate it at higher speeds. 
Thus, flexible link manipulators are a subject of intensive 
research. 

Dwivedy and Eberhard (2006) presented a wide review on 
dynamic analysis of flexible manipulator done by various 
researchers. Book et al. (1975) linearized the equations of 
motion about a nominal configuration for a two-link flexible 
manipulator. Chang and Hamilton (1991), and Usoro et al. 
(1986) presented a Lagrangian finite element approach for 
the mathematical modeling of the manipulators with flexible 

links. Yigit (1994) modeled a two-link rigid-flexible 
manipulator and derived the equations of motion by applying 
the Hamilton’s principle. Ankarah and Diken (1997) used 
the Euler–Bernoulli beam theory and solved the transient 
vibration theorem with the mode summation method to 
control the residual vibration of a single flexible link. 

The dynamics of a flexible arm and flexible joint 
manipulator carrying a payload with rotary inertia was 
studied by Bedoor and Almusallam (2000). Meghdari and 
Fahimi (2001) derived the improved elastic generalized 
coordinates. Kane’s equation of motion for arbitrary number 
of rigid and elastic bodies is presented. Also, equations of 
motion are de-coupled in first order terms.  Zhang and Bai 
(2012) established Lagrangian dynamic equations of 
two-link flexible manipulator through integrated model and 
multi body dynamics method. Dynamic response reliability 
is analyzed by using Monte Carlo and extremum surface 
method. 

Most of the published work focuses on modelling and 
pays less attention for its optimal design. Asada et al. (1991) 
presented optimum structure along with control aspect of 
flexible robot arms. Coordinates used by finite element 
model are treated as design variables, which are optimized 
for obtaining the optimal shape and structure of the arm 
mechanism. Wang (1994) addressed optimum design of a 
single link manipulator to maximize its fundamental 
frequency. He formulated the design problem as a nonlinear 
eigenvalue problem and used variational method. He 
demonstrated the increase of fundamental frequency as a 
result of optimization by considering a few numerical 
examples. 

In the present work a linearized model for small rigid body 
motion and small flexural deflection is used. Based on this 
model, complete parametric study is done to predict the 
dynamic behaviour of the system due to the variation of 
various design parameters. In addition, shape optimization is 
done to increase the fundamental frequency and dynamic 
response of the optimized links is studied. 
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Nomenclature 
1, 2  subscripts defined for first link and second link respectively 

1 2,E E  Young’s modulus 

1 2,h h  elements lengths 

1 2,I I  second moments of inertia 

[ ]K  global stiffness matrix 

[ 1
iK ],[ 2

jK ] elemental stiffness matrices of andth thi j  elements respective 

1 2,L L  Link length 

1 2,m m  masses per unit length 

1 2
,t tm m  tip loads (payloads) 

[ ]M  global inertia matrix 

[ 1
iM ],[ 2

jM ] elemental inertia matrices of andth thi j  elements respectively 

1 2,n n  no of finite elements 

q  global nodal variables or generalized co-ordinates 
'

1 1,r r  position vectors of point '
1P  in link 1 with respect to XOY  and 1 1X OY  

'
2 2,r r   position vectors of point '

2P  in link 2 with respect to XOY  and 1 1X OY  

2 2 2,i iu u +  deflections at node of  ith element of 1st link 

2 1 2 1,i iu u− +  slopes at node of  ith element of 1st link 

2 1 2
, 1j j

w w− +
 slopes at node of  jth element of 2nd link 

XOY       inertial system of co-ordinate 

1 1X OY  body-fixed system of co-ordinate attached to link 1 

' '
1 2 1X O Y  lateral transformation of 1 1X OY  by ( 1 2 1 1( , )nL u +  

22 2X O Y  body fixed to the system of co-ordinate attached in link2 

α  ratio of length of second link to that of first link 

β  ratio of  hub mass to the total mass of  the links 

1 2,µ µ  ratio of payload to the total mass of the links 

1 2,ρ ρ  specific densities 

1 2,τ τ  applied torques at hub and link joint respectively 

 
2. Obtaining Elemental Equation of 

Manipulator 
Rotating flexible beams have significant transverse 

deflections. They behave as a nonlinear elastic beams and 
exhibit vibratory motions in both chord wise and flap wise 
directions. However, Robotic manipulators usually work at 
moderate peak speed. Induced transverse force in the chord 
wise direction due to the applied excitation torque is much 
higher compared to the gravity force in flap wise direction 
and vibrations are predominantly in chord wise directions. In 

this work, model of Usoro at el. (1986) is adopted. However, 
formulations are consistently linearized for small 
angular/transverse deflections under linear beam theory to 
reduce the complexity of the system modeling. 

2.1 Modeling of First Link 

Fig.1(a) shows single link flexible manipulator in which 
XOY and X1OY1 represents the stationary and moving 
co-ordinate frames respectively. Motion of the link is 
represented by fixed XOY co-ordinate frame. The link is 
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considered slender. Hence, transverse shear and rotary 
inertia effects are neglected allowing it to be treated as an 
Euler-Bernoulli beam. Beam is assumed to vibrate 
predominantly in horizontal plane (XOY), neglecting gravity 
effects. 

 

 

 
Figure 1. (a) Configuration diagram of 1st link of manipulator 

(b) Typical ith finite element of the 1st link having 5 dof 

Consider a point P1 in the ith element on the manipulator at 
a distance 1x  from the hub. The point  1P  attains the 
position '

1P  with respect to inertial frame of reference 
(XOY) after having rigid body motion 1( )tθ  and flexural 
deflection 1( , )u x t . Flexural deflection 1( , )u x t  of point 

1P  is approximated as 

( )
{ }

1 1 2 1 2 2 3 2 1 4 2 2, i i i iu x t N u N u N u N u

N U
− + += + + +

=   
   (1) 

Where 

1 2 3 4  N N N N N=       ,

{ } 2 1 2 2 1 2 2 .T
i i i iU u u u u− + −=     

In the FEM formulation the manipulator is divided into 
finite elements, each element having five degrees of freedom. 
Detail of thi  element of the first link is shown in Fig. 1(b). 
In the figure, 1θ  is the hub rotation and 2 1 2, ,i iu u−  

2 1 2 2andi iu u+ + are the transverse deflections and slopes at 
the first and second nodes of the element. The position vector 
of '

1P  with respect to inertial system XOY for smaller 

angular displacement and small flexural deflection is given 
by 

1
1

1 1

.
xX

x uY θ
  

= =    +   
r              (2) 

In finite element method, variables are converted to nodal 
variables. 
Let 

1 1 2 1 2 2 1 2 2i i i iZ u u u uθ − + +=    , 

then 

1 1
1

1

TZ
t Z

 ∂ ∂
=  ∂ ∂ 



r r
                (3) 

2.1.1. Kinetic energy computation of the ith element of the 1st 
link: 

Kinetic energy of thi  element of the first link is given by 

1
1 1

1 1 1
0

1 d .
2

h T
iT m x

t t
 ∂ ∂

= ⋅ ∂ ∂ 
∫

r r
        (4) 

We have 

1 1 1 1
1 1

1 1

TT
TZ Z

t t Z Z
   ∂ ∂ ∂ ∂

⋅ =    ∂ ∂ ∂ ∂   
 

r r r r
        (5) 

Substituting Equation 5 in Equation 4, we get 

1
1 1

1 1 1 1 1
1 10

1 d .
2

Th
i TT Z m x Z

Z Z

    ∂ ∂
 = ⋅   ∂ ∂     
∫ 

r r
  (6) 

Thus elemental mass matrix is given by 
1

1 1
1 1 1

1 10

11 12 13 14 15

21

31

41 1

51

d

,

     

Th
i

i

M m x
Z Z

M M M M M
M
M
M P
M

   ∂ ∂
= ⋅   ∂ ∂   

 
 
 
 =
 
 
  

∫
r r

      (7) 

where, 

1 1
2 2

1 1 1 11 1
1

1 1
2 2

1 1 1 1

156 22 54 13
22 4 13 3
54 13 156 22420
13 3 22 4

i

h h
h h h hm hP

h h
h h h h

− 
 − =
 −
 − − − 

 

All the constants of the above matrix may be obtained by 
integrating 1

iM  for different vector elements of Z1. 
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2.1.2. Elastic potential energy of the ith element of 1st link 
Potential energy of the ith element of 1st link due to elastic 

deformation is given by 

{ } { }

1

1

22

1 1 1 12
10

'' ''
1 1 1

0

1 d
2

1 d
2

h
i

h
T T

uV E I x
x

U E I N N x U

 ∂
=  ∂ 

   =    

∫

∫
      (8) 

Thus, elemental stiffness matrix is given by  
1

'' ''
1 1 1 1

0

1 1
2 21 1

1 1 1 13
1

1 1
2 2

1 1 1 1

d

0 0 0 0 0
0 12 6 12 6
0 6 4 6 2
0 12 6 12 6
0 6 2 6 4

h
i TK E I N N x

h h
E I h h h h
h

h h
h h h h

   =    

 
 − 
 = −
 − − − 
 − 

∫

     (9) 

2.2 Modeling of Second Link 

Figure 2(a) shows 2nd link flexible manipulator in which 
XOY represents the stationary and 

' '
1 1 1 2 2 2 1 2 1X O Y ,X O Y and X O Y  represent moving 

co-ordinate frames. Consider an infinitesimal link element 
2P  on the manipulator at a distance 2x  from the link joint. 

Point 2P  attains the position '
2P  after time ‘t’ with respect 

to non-inertial frame of reference ( 2 2 2X O Y ) after having 
rigid body motion 2 ( )tθ  and transverse deflection

2( , )w x t .Flexural deflection 2( , )w x t  of point P2 is 
approximated in finite element as 
( )

{ }
2 1 2 1 2 2 3 2 1 4 2 2,

,
j j j jw x t S w S w S w S w

S W
− + += + + +

=   
 (10) 

Where 1 2 3 4 S  SS S S=       ,

{ } 2 1 2 2 1 2 2
T

j j j jW w w w w− + − =   . 

Hermitian shape functions are expressed bySi. 

 
 

 
Figure 2.  (a) Configuration diagram of 2nd link of manipulator, 

(b) Typical jth element of the 2nd link having 8 dof 

In the FEM formulation the manipulator is divided into 10 
elements, each element having eight degrees of freedom. 
Detail of thj  element of the second link is shown in Figure 

2(b). In the Figure 2b, 2θ  is the second link rotation and 

2 1 2 2 1 2 2, , andj j j jw w w w− + +
 are the transverse deflections 

and slopes at the first and second nodes of the element along 
with the variables associated with the first link 1,θ  

1 12 1 2 2and .n nu u+ +
 The position vector of '

2P  with respect 

to inertia system XOY for smaller angular displacement and 
small flexural deflection is given by 

( )
1 1

1 2
2

1 1 2 2 1 2 2 2 2 2
.

n n

L x
L x u x x u wθ θ+ +

+ 
=  + + + + + 

r (11) 

In finite element, variables are converted to nodal variables. 

Let 

1 12 1 2 1 2 2 2 2 1 2 1 2 1 2 1n n j j j jZ u u w w w wθ θ+ + − − − + =  
then 

2 2
2

2

TZ
t Z

 ∂ ∂
=  ∂ ∂ 



r r
              (12) 

and 

2 2 2 2
2 2

2 2

TT
TZ Z

t t Z Z

    ∂ ∂ ∂ ∂ ⋅ =     ∂ ∂ ∂ ∂     

 

r r r r
      (13) 

2.2.1. Kinetic Energy Computation of the jth element of 
the 2nd link: 

Kinetic energy of the second link of the thj  element is 

2
2 2

2 2 2 2 2
0

1 d ,
2

Th
j TT Z m x Z

t t
 ∂ ∂   = ⋅    ∂ ∂     
∫ 

r r
     (14) 

Thus, mass matrix of the element become 
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2
2 2

2 2 2
0

d
Th

jM m x
t t

∂ ∂   = ⋅   ∂ ∂   ∫
r r

      (15) 

11 12 13 14 15 16 17 18

21 22 23 24 25 26 27 28

31 32 33 34 35 36 37 38

41 42 43 44 45 46 47 48
2

51 52 53 54

61 62 63 64 2

71 72 73 74

18 82 83 84

,j

j

M M M M M M M M
M M M M M M M M
M M M M M M M M
M M M M M M M M

M
M M M M
M M M M P
M M M M
M M M M

 
 
 
 
 
 =  
 
 
 
 
  

                     

(16) 

Where 

2 2
2 2

2 2 2 22 2
2

2 2
2 2

2 2 2 2

156 22 54 13
22 4 13 3

.
54 13 156 22420
13 3 22 4

j

h h
h h h hm hP

h h
h h h h

− 
 − =
 −
 − − − 

 

All the constants of the above matrix may be obtained by 
integrating 2

jM  for different vector elements of Z2. 

2.2.2. Elastic potential energy of the jth element of 2nd  Link 
The potential energy of the jth  element of the 2nd link due 

to elastic deformation is given as 

2

2

22

2 22
20

" "
2 2 2

0

1 d
2

1 d .
2

h
j

h
TT

wV EI x
x

W E I S S x W

 ∂
=  ∂ 

   =          

∫

∫
    (17) 

Thus, the elemental stiffness matrix is given by 
2

'' ''
2 2 2 2

0

2 2
3

2 22
2 2

2 2 2 2

2 2
2 2

2 2 2 2

d

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 12 6 12 6
0 0 0 0 6 4 6 2
0 0 0 0 12 6 12 6
0 0 0 0 6 2 6 4

h
TjK E I S S x

E I
h hh

h h h h
h h

h h h h

   =    

 
 
 
 
 
 =  −
 

− 
 − − −
 

−  

∫

  (18) 

3. Lagrange’S Equation of Motion in 
Discretized Form 

The kinetic energy and the potential energy of the system 
are obtained by computing the kinetic energy and potential 
energy of the each element of the system and summing over 
all the elements. Thus, global mass matrix and global 
stiffness can be obtained as 

[ ]
1 2

1 2
1 1

n n
i j

g g
i j

M M M
= =

   = +   ∑ ∑          (19) 

and 

[ ]
1 2

1 2
1 1

n n
i j

g g
i j

K K K
= =

   = +   ∑ ∑            (20) 

where, 1 2,i j

g g
M M        denote the mass matrices of thi

element of first link and thj  element of second link 

respectively expressed in global form and 1 2,i j

g g
K K        

denotes the stiffness matrices of thi  element of first link and 
thj  element of second link respectively expressed in global 

form. 
Total kinetic energy and potential energy can be expressed 

as  

[ ] [ ][ ] [ ] [ ][ ]1 1and
2 2

T TT q M q V q K q= =    (21) 

respectively, where [ ] [ ]andM K  are the global matrices 
and [q] is the global nodal vector defined as 

1 21 1 2 2 2 1 2 2. . . .n nu u w wθ θ+ +   . 

Lagrangian of the system is given by L T V= − .  Then, 
Lagrange’s equations of motion of this dynamic system is 
written as 

,L L
t
 ∂ ∂ ∂

− = ∂ ∂ ∂ 
qF

q q
             (22) 

where qF  are the generalized forces. Being linear system, 
global mass and stiffness matrix is constant and equation of 
motion comes as 

[ ]{ } [ ]{ } { }qM q K q F+ =              (23) 

Effect of hub mass and payload mass is incorporated in the 
global mass matrix and stiffness matrix using Dirac-delta 
function as described by Dixit et al. (2006). Hub mass and tip 
mass/payload is defined in terms of β  (ratio of hub mass to 
beam mass), 2µ  (ratio of tip mass at link 2 to total beam 
mass), 1µ  (ratio of tip mass at link 1, mass of the motor at 
the link joint, to total beam mass) and α  (ratio of length of 
link 2 to length of link 1). 

Neglecting load vector, Eq. 23 becomes standard 
eignvalue problem, which is solved to obtain natural 
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frequencies of the system. Numerical integration of Eq. 23 is 
carried out by using Newmark’s integration scheme (Dixit, 
2009) to obtain transverse deflections u & v, rigid body 
motions θ1 & θ2 and their derivatives. 

4. Results and Discussion 
In this section, a comparative analysis has been carried out 

for uniform as well as shape optimized double link flexible 
revolute manipulator. For the numerical study, a manipulator 
having uniform diameter 0.01 m, length  1.0 m,  mass per 
unit length 217.3 gm/m,  Young’s  modulus of elasticity 69 
GPa is considered for both the links.  Damping of the 
system is neglected. Most of the numerical simulations are 
done subjected to a sinusoidal torque given in Eq. 24 about 
the axis of rotation, 

1, 2,
 sin , 0 2

   0,          2 4
kk m

k
t t

t

τ τ π
=

= ≤ ≤ 


= < ≤ 
    (24) 

where , and
kk m tτ τ  represent applied torque, torque 

amplitude and time duration respectively. Torques 

1 2andτ τ  are applied to the hub axis and joint axis 
respectively. 

The dynamic behaviors depend upon many parameters of 
double links flexible manipulator and also dynamic response 
consists of several desired objectives viz higher hub angle, 
less static deflection, less residual vibration, less response 
and settling time, etc. Improved dynamic response is a multi 
objective problem. Here some parametric study is done to 

analyze the dynamic behaviour of double link flexible 
manipulator. 

4.1. Dynamic Response due to Different Payloads 

Dynamic behaviour of the double link flexible 
manipulator changes with respect to the change of payloads 
at the tip of second link as shown in Fig. 4. It is observed that 
with the increase of payloads, the magnitude of hub angle 
and joint angle reduce. Residual vibration is considerably 
more at tip of first link or second link depending upon the 
input torque at hub joint or link joint respectively. 

It is also observed that there is very small effect in 
dynamic response with the increase of hub inertia. Similar 
trend is observed in dynamic response due to the variation of 
motor mass (tip load at link1) and hub mass. For the sake of 
brevity, these results are not tabulated here. 

4.2. Effect of Link Lengths on Dynamic Response 

Dynamic response of the double link flexible 
manipulators also depends upon the links length ratios. For 
the payloads ratios 1 0.01,µ = 2 0.02,µ = 5β =  and 
input torques 

1
0.2 N.mmτ =  and

2
0.04 N.mmτ = , effects 

of different links length ratios is plotted in Fig. 5, keeping 
length of the first link constant 1( 1.0m).L =  The lesser 
the length of link 2 with respect to Link 1, the better the 
dynamic response i.e. more hub/joint angle and lesser 
residual vibration for the given set of torque. Therefore, 
designer should not prefer the longer second link with 
respect to the first link. 

 

Figure. 4  Dynamic response due to payloads at the tip (a) Hub angle, (b) Joint angle, (c) Residual Tip 1, (d) Residual Tip 2 wit 

11 1, 5, 0mµ β τ= = =
2

and 0.02 N.mmτ =  
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Figure. 5 Dynamic response due to variation of link lengths (a) Hub angle, (b) Joint angle, (c) Residual Tip 1, (d) Residual Tip 2 with

1 20.01, 0.02,µ µ= =  
1 2

5, 0.2 N.m and 0.04 N.mm mβ τ τ= = =   

 

Figure. 6  Dynamic response due to variation of  applied torque (a) Hub angle, (b) Joint angle, (c) Residual Tip 1, (d) Residual Tip 2 with 
 1 20.4, 0.02,µ µ= =  

1
5 and 0.4 N.mmβ τ= =  

4.3. Dynamic Response Due to Different Input Torques 

In double link flexible manipulator dynamic response 
depends upon the magnitude of input torques at the hub and 
joint between link 1 and two. For the payloads ratios 

1 0.4,µ = 2 0.02,µ = 5β =  and the input torque

1
0.4 N.mmτ = , dynamic response due to the variation of 

torque 2τ  is plotted in Fig. 6. It is observed that there is a 
decrease in hub angle and increase of joint angle with the 
increase of torque amplitude. As the magnitude of applied 
torque 2τ  increases, there is considerable increment in the 

residual vibration of the tip of second link. Similar trend is 
also observed due to the variation of input torque 1τ  at the 
hub joint (result not shown here). Thus, tip vibration increase 
for a particular link with the increase of torque amplitude 
acting in that particular link. Overall angular displacement 
depends upon the set of input torques at the joints. 

4.4. Comparative Dynamic Response due to Different 
Torque Profile 

Different torque profiles shown in Fig. 7 are considered 
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for the comparison of dynamic response of double link 
flexible manipulator. All the torque profiles have same 
amplitude i.e. 0.5 N.m and same duration of excitation i.e. 4 
sec. Dynamic response due to different torque profile is 
shown in Fig. 8. 

Triangular torque profile gives the lesser hub angles to the 

links. Bang-bang torque gives high input energy to the 
system giving high hub angle as well joint angle. However 
due to sudden change, bang-bang torque produces high 
residual vibration to the system. Sinusoidal torque may be 
preferred for smooth operations of the system. 

 

 

 

Figure. 7  Different torque profiles (a) Trapezoidal, (b) Triangular, (c) Bang-bang, (d) Sinusoidal 

 

Figure 8  Dynamic response due to different torque profiles (a) Hub angle, (b) Joint angle, (c) Residual Tip 1, (d) Residual Tip 2  with 
1 20.02, 0.02,µ µ= =

1 2
5, 0.2 N.m and 0.06 N.mm mβ τ τ= = = . 

5. Conclusions 
Dynamics of double link flexible manipulator is highly 

complex and nonlinear in nature. Model is linearized to 
reduce the complexity of the model and tried to predict the 

behaviour of the system under low amplitude of vibration 
due to excitation. Parametric study suggests that dynamic 
response of the double link manipulator depends upon 
system parameters viz. payloads at tip and link joint, link 
lengths, input torque magnitude & profile and hub inertia. 
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