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Abstract Spectral theory of isotropic random fields in
Euclidean space developed by M. I. Yadrenko is exploited to
find solution to the problem of optimal linear estimation of
the functional

Aζ =

∞∑
j=0

∫
Sn

a(j, x)ζ(−j, x)mn(dx)

which depends on unknown values of a periodically cor-
related (cyclostationary with period T ) with respect to
time isotropic on the sphere Sn in Euclidean space En

random field ζ(j, x), j ∈ Z, x ∈ Sn. Estimates are based
on observations of the field ζ(j, x) + θ(j, x) at points
(j, x), j = 0,−1,−2, . . . , x ∈ Sn, where θ(j, x) is an
uncorrelated with ζ(j, x) periodically correlated with respect
to time isotropic on the sphere Sn random field. Formulas
for computing the value of the mean-square error and the
spectral characteristic of the optimal linear estimate of the
functional Aζ are obtained. The least favorable spectral
densities and the minimax (robust) spectral characteristics of
the optimal estimates of the functional Aζ are determined
for some special classes of spectral densities.

Keywords Random Field, Filtering, Robust Estimate,
Mean Square Error, Least Favorable Spectral Densities,
Minimax Spectral Characteristic

1 Introduction
Cosmological Principle (first coined by Einstein): the Uni-

verse is, in the large, homogeneous and isotropic (Bartlett
1999). In the last two decades there has been some grow-
ing interest in studying the spatial–time data measured on the
surface of a sphere. These data includes cosmic microwave
background (CMB) anisotropies (Bartlett [1]; Hu and Dodel-
son [2]; Kogo and Komatsu [3]), medical imaging (Kakarala
[4]), global and land-based temperature data (Jones [5]), grav-
itational and geomagnetic data, climate model (North and
Cahalan [6]). Theory of isotropic random fields on a sphere
has a long history. Some basic results and references can be

found in books by Yadrenko [7] and Yaglom [8]. Due to the
expansive recent applications there are new books by Gae-
tan and Guyon [9], Cressie and Wikle [10], Marinucci and
Peccati [11] and several papers covering a number of prob-
lems in general for spatial-time observations (see, for exam-
ple, Subba Rao and Terdik [12], Terdik [13]).

Periodically correlated processes are those signals whose
statistics vary almost periodically, and they are present in nu-
merous physical and man-made processes. A comprehensive
listing most of the existing references up to the year 2005 on
periodically correlated processes and their applications was
proposed by Serpedin at al. [14]. See also a review by An-
toni [15]. For more details see a survey paper by Gardner [16]
and book by Hurd and Miamee [17]. Note, that in the litera-
ture, periodically correlated processes are named in multiple
different ways such as cyclostationary, periodically nonsta-
tionary or cyclic correlated processes.

The least square optimal estimation problems for period-
ically correlated with respect to time isotropic on a sphere
random fields are natural generalization of the linear extrap-
olation, interpolation and filtering problems for stationary
stochastic processes and homogeneous random fields. Ef-
fective methods of solution of the linear extrapolation, inter-
polation and filtering problems for stationary stochastic pro-
cesses were developed by Kolmogorov [18], Wiener[19], Ya-
glom [8]. The further results one can find in survey article by
Kailath [20], books by Rozanov [21], Yadrenko [7], articles
by Moklyachuk and Yadrenko [22].

Traditional methods of solution of estimation problems
may be employed under the condition that spectral densi-
ties of processes and fields are known exactly. In practice,
however, it is impossible to have complete information on
the spectral densities in most cases. To solve the problem
one finds parametric or nonparametric estimates of the un-
known spectral densities or selects these densities by other
reasoning. Then the classical estimation method is applied
provided that the estimated or selected densities are the true
one. This procedure can result in a significant increasing of
the value of error as Vastola and Poor [23] have demonstrated
by some examples. This is a reason to search estimates which
are optimal for all densities from a certain class of admissible
spectral densities. These estimates are called minimax since
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they minimize the maximal value of the error. A survey of
results in minimax (robust) methods of data processing can
be found in the paper by Kassam and Poor [24]. The paper
by Grenander [25] should be marked as the first one where
the minimax approach to extrapolation problem for stationary
processes was proposed. Franke [26] investigated the mini-
max extrapolation problem for stationary sequences with the
help of convex optimization methods. This approach makes
it possible to find equations that determine the least favorable
spectral densities for various classes of densities. For more
details see, for example, book by Moklyachuk [27]. Meth-
ods of solution the minimax-robust estimation problems for
vector stationary sequences and processes were developed by
Moklyachuk and Masyutka [28]. Luz and Moklyachuk [29]
– [31] investigated the minimax estimation problems for lin-
ear functionals which depend on unknown values of stochas-
tic process with stationary nth increments. Dubovets’ka and
Moklyachuk [32] – [35] investigated the minimax-robust es-
timation problems (extrapolation, interpolation and filtering)
for the linear functionals which depend on unknown values
of periodically correlated stochastic processes. Methods of
solution the minimax-robust estimation problems for time-
homogeneous isotropic random fields on a sphere were devel-
oped by Moklyachuk [36] – [41]. In the paper by Dubovetska
at al. [42] investigation of minimax-robust estimation prob-
lems for periodically correlated isotropic random fields was
initiated.

In this article we considered the problem of least square
optimal linear estimation of the functional

Aζ =

∞∑
j=0

∫
Sn

a(j, x)ζ(−j, x)mn(dx)

which depends on unknown values of a periodically corre-
lated (cyclostationary with period T ) with respect to time
isotropic on the sphere Sn in Euclidean space En random
field ζ(j, x), j ∈ Z, x ∈ Sn. Estimates are based on
observations of the field ζ(j, x) + θ(j, x) at points (j, x),
j = 0,−1,−2, . . . , x ∈ Sn, where θ(j, x) is an uncorre-
lated with ζ(t, x) periodically correlated with respect to time
isotropic on the sphere Sn random field. Formulas are de-
rived for computing the value of the mean-square error and
the spectral characteristic of the optimal linear estimate of the
functional Aζ in the case of spectral certainty where spectral
densities of the fields are exactly known. Formulas are pro-
posed that determine the least favourable spectral densities
and the minimax-robust spectral characteristic of the optimal
estimate of the functional Aζ for concrete classes of spectral
densities under the condition that spectral densities are not
exactly known, but classes D = DF × DG of admissible
spectral densities are given.

2 Spectral properties of periodically
correlated with respect to time
isotropic on a sphere random fields

Let Sn be the unit sphere in n-dimensional Euclidean
space En, let mn(dx) be the Lebesgue measure on Sn,
let Sl

m(x), x ∈ Sn, m = 0, 1, . . . ; l = 1, . . . , h(m,n),
be orthonormal spherical harmonics of degree m, and let
h(m,n) = (2m+n−2)(m+n−3)!/((n−2)!m!) be the num-

ber of linearly independent orthonormal spherical harmonics
of degree m (Müller [43]).

A mean-square continuous random field ζ(j, x), j ∈ Z,
x ∈ Sn, is called periodically correlated (cyclostationary
with period T ) with respect to time isotropic on the sphere
Sn if

Eζ(j + T, x) = Eζ(j, x) = 0, E|ζ(j, x)|2 <∞,

E
(
ζ(j + T, x)ζ(k + T, y)

)
= B (j, k, cos⟨x, y⟩) ,

where cos⟨x, y⟩ = (x, y) is the “angular” distance between
points x, y ∈ Sn. Since it is isotropic on the sphere Sn

this random field ζ(j, x) can be represented in the form (Ya-
drenko [7], Yaglom [8])

ζ(j, x) =
∞∑

m=0

h(m,n)∑
l=1

Sl
m(x)ζlm(j),

ζlm(j) =

∫
Sn

ζ(j, x)Sl
m(x)mn(dx),

where ζlm(j), j ∈ Z, m = 0, 1, . . . ; l = 1, . . . , h(m,n),
are mutually uncorrelated periodically correlated stochastic
sequences with the correlation function bζm(j, k) :

E
(
ζlm(j + T )ζvu(k + T )

)
= δumδ

v
l b

ζ
m(j, k),

m, u = 0, 1, . . . ; l, v = 1, . . . , h(m,n); j, k ∈ Z.

The correlation function of the random field ζ(j, x) can be
represented as follows

B (j, k, cos⟨x, y⟩) =

=
1

ωn

∞∑
m=0

h(m,n)
C

(n−2)/2
m (cos⟨x, y⟩)
C

(n−2)/2
m (1)

bζm(j, k),

where ωn = (2π)n/2Γ(n/2), Cl
m(z) are the Gegenbauer

polynomials (Müller [43]).
Stochastic sequences ζlm(j), j ∈ Z, are periodically cor-

related with period T if and only if there exist T -variate sta-
tionary sequences (Gladyshev [44], Makagon [45])

ξ⃗lm(j) = {ξlmk(j)}T−1
k=0 , j ∈ Z,

such that ζlm(j) can be represented in the form

ζlm(j) =

T−1∑
k=0

e2πikj/T ξlmk(j), j ∈ Z. (1)

The sequences ξ⃗lm(j) = {ξlmk(j)}
T−1
k=0 are called generating

sequences of the periodically correlated sequences ζlm(j).
Denote by Fm(dλ),m = 0, 1, . . . , the matrix spectral

measure (distribution) function of the T -variable vector sta-
tionary sequence ξ⃗lm(j) = {ξlmk(j)}

T−1
k=0 , resulting from the

Gladyshev representation. Denote by Φm(dλ) the matrix
spectral measure function of the T-variable vector stationary
sequence

ζ⃗lm(j) = {ζlmk(j)}T−1
k=0 ,

[ζ⃗lm(t)]j = ζlm(jT + k), j ∈ Z, k = 0, 1, . . . , T − 1

arising from the splitting into blocks of length T the univari-
ate periodically correlated sequence ζlm(j).
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Spectral matrices Φm(dλ) and Fm(dλ) are connected by
the formula

Φm(dλ) = T · V (λ)Fm(dλ/T )V −1(λ),

where V (λ) is a unitary T×T matrix whose (k, j)-th element
is of the form

vkj(λ) =
1√
T
e2πijk/T+ijλ/T , k, j = 0, 1, . . . , T − 1.

The invertibility and continuity of V (λ) for λ ∈ [−π, π)
means that the relation can also be expressed as

Fm(dλ) =
1

T
· V −1(Tλ)Φm(Tdλ)V (Tλ).

The matrix spectral measures Fm(dλ) and Φm(dλ) are mu-
tually absolutely continuous. Consequently, if there exists
the spectral density matrix F ξ⃗

m(λ) of the T-variate stationary
sequence ξ⃗lm(t), then there exists the spectral density matrix
F ζ⃗
m(λ) of the T -variate stationary sequence ζ⃗lm(t) obtained

from the splitting into blocks of length T the univariate pe-
riodically correlated sequence ζlm(t), and these two density
matrices satisfy the relation

F ζ⃗
m(λ) = T · V (λ)F ξ⃗

m(λ/T )V −1(λ).

We will suppose in the following text that matrix spec-
tral measures Fm(dλ),m = 0, 1, . . . , of the generating se-
quences ξ⃗lm(j) = {ξlmk(j)}

T−1
k=0 are absolutely continuous

with respect to the Lebesgue measure and form a sequence of
spectral density matrices F (λ) = {F η⃗

m(λ) : m = 0, 1, . . . }
called the spectral density of the field ζ(j, x).

3 Method of filtering based on factor-
ization of spectral densities

Consider the problem of mean square optimal linear esti-
mation of the unknown value of the functional

Aζ =
∞∑
j=0

∫
Sn

a(j, x)ζ(−j, x)mn(dx)

which depends on unknown values of a periodically corre-
lated with respect to time isotropic on the sphere Sn in Eu-
clidean space En random field ζ(j, x), j ∈ Z, x ∈ Sn. Esti-
mates are based on observations of the field ζ(j, x) + θ(j, x)
at points (j, x), j = −1,−2, . . . , x ∈ Sn, where the ‘noise’
field θ(j, x) is an uncorrelated with ζ(t, x) mean-square con-
tinuous periodically correlated with respect to time isotropic
on the sphere Sn random field which has the representation

θ(j, x) =
∞∑

m=0

h(m,n)∑
l=1

Sl
m(x)θlm(j) =

=
∞∑

m=0

h(m,n)∑
l=1

Sl
m(x)

T−1∑
k=0

e2πikj/T ηlmk(j),

θlm(j) =

∫
Sn

θ(j, x)Sl
m(x)mn(dx).

In this representation θlm(j), j ∈ Z, m = 0, 1, . . . ; l =
1, . . . , h(m,n), are mutually uncorrelated periodically cor-
related stochastic sequences with the correlation function
bθm(j, k):

E
(
θlm(j + T )θvu(k + T )

)
= δumδ

v
l b

θ
m(j, k),

m, u = 0, 1, . . . ; l, v = 1, . . . , h(m,n); j, k ∈ Z,

and η⃗lm(j) = {ηlmk(j)}
T−1
k=0 are vector-valued stationary

sequences generating the periodically correlated sequences
θlm(j). We will suppose that the matrix spectral mea-
sures Gη⃗

m(dλ),m = 0, 1, . . . , of the generating sequences
η⃗lm(j) = {ηlmk(j)}

T−1
k=0 are absolutely continuous with re-

spect to the Lebesgue measure and form a sequence of spec-
tral density matrices G(λ) = {Gη⃗

m(λ) : m = 0, 1, . . . }
called the spectral density of the field θ(j, x).

Assume that the function a(j, x) which determines the
functional

Aζ =
∞∑
j=0

∫
Sn

a(j, x)ζ(−j, x)mn(dx) =

=

∞∑
m=0

h(m,n)∑
l=1

∞∑
j=0

alm(j)ζlm(−j) (2)

has components

alm(j) =

∫
Sn

a(j, x)Sl
m(x)mn(dx)

which satisfy the following condition

∞∑
m=0

h(m,n)∑
l=1

∞∑
j=0

∣∣alm(j)
∣∣ <∞. (3)

Condition (3) ensure convergence of the series representation
(2) of the functional Aζ as well as finiteness of the second
moment of the functional: E|Aζ|2 <∞.

Making use the Gladyshev representation (1) we can write
the functional Aζ in the form

Aζ =
∞∑

m=0

h(m,n)∑
l=1

∞∑
j=0

(⃗alm(j))⊤ξ⃗lm(−j),

a⃗lm(j) = (alm0(j), a
l
m1(j), . . . , a

l
m(T−1)(j))

⊤,

almk(j) = alm(j)e2πikj/T , k = 0, 1, . . . , T − 1,

where ξ⃗lm(j) = {ξlmk(j)}
T−1
k=0 are vector-valued stationary

sequences generating the periodically correlated sequences
ζlm(j).

Every linear estimate Âζ of the functional Aζ is deter-
mined by spectral stochastic measures

(Zξ⃗)
l
m(dλ) =

{
(Zξ⃗)

l
mk(dλ)

}T−1

k=0
,

(Zη⃗)
l
m(dλ) =

{
(Zη⃗)

l
mk(dλ)

}T−1

k=0
,

of the generating sequences ξ⃗lm(j) = {ξlmk(j)}
T−1
k=0 and

η⃗lm(j) = {ηlmk(j)}
T−1
k=0 , and the spectral characteristic

h (λ) =
{
hlm (λ) : m = 0, 1, . . . ; l = 1, 2, . . . , h(m,n),

}
,
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hlm (λ) =
{
hlmk (λ)

}T−1

k=0
,

which is from the subspace L−
2 (F + G) generated by func-

tions

hlm(λ) =

∞∑
j=0

h⃗lm(j)e−ijλ,m = 0, 1, . . . ; l = 1, . . . , h(m,n),

in the space L2(F +G) of functions that satisfy condition

∞∑
m=0

h(m,n)∑
l=1

∫ π

−π

(hlm(λ))⊤ [Fm(λ) +Gm(λ)]hlm(λ)dλ <∞.

The estimate Âζ has the spectral representation of the form

Âζ =

∞∑
m=0

h(m,n)∑
l=1

∫ π

−π

(hlm (λ))⊤
[
(Zξ⃗)

l
m(dλ) + (Zη⃗)

l
m(dλ)

]
.

The mean square error ∆(h;F,G) = E|Aζ − Âζ|2 of the
estimate Âζ is determined by matrices of spectral densities
F (λ) = {Fm(λ) : m = 0, 1 . . . }, G(λ) = {Gm(λ) : m =

0, 1 . . . } of the generating sequences ξ⃗lm(j) = {ξlmk(j)}
T−1
k=0

and η⃗lm(j) = {ηlmk(j)}
T−1
k=0 , and the spectral characteristic

h (λ) of the estimate

∆(h;F,G) = E|Aζ − Âζ|2 =

=
∞∑

m=0

h(m,n)∑
l=1

1

2π

∫ π

−π

{[(
Al

m(λ)
)⊤ −

(
hlm(λ)

)⊤]
Fm(λ)×

×
[(
Al

m(λ)
)⊤ −

(
hlm(λ)

)⊤]∗ }
dλ+

+
∞∑

m=0

h(m,n)∑
l=1

1

2π

∫ π

−π

(
hlm(λ)

)⊤
Gm(λ)

((
hlm(λ)

)⊤)∗
dλ,

(4)

Al
m(λ) =

∞∑
j=0

a⃗lm(j)e−ijλ.

The spectral characteristic h(F,G) of the least square op-
timal linear estimate Âζ minimizes the value of the mean
square error. We first apply the method based on factor-
izations of matrices of spectral densities to find the spectral
characteristic h(F,G) and the mean square error of the least
square optimal linear estimate Âζ of the functional Aζ. For
more relative results see articles by Moklyachuk [36] – [41]
and books by Moklyachuk [27], Moklyachuk and Masyutka
[28].

Suppose that matrices of spectral densities Fm(λ) and
Gm(λ) admit the canonical factorizations

Fm(λ) = φm(λ)(φm(λ))∗, (5)

φm(λ) =
∞∑
k=0

φm(k)e−ikλ,

Gm(λ) = ψm(λ)(ψm(λ))∗, (6)

ψm(λ) =

∞∑
k=0

ψm(k)e−ikλ,

Fm(λ) +Gm(λ) = dm(λ)(dm(λ))∗, (7)

dm(λ) =
∞∑
k=0

dm(k)e−ikλ,

where φm(k), ψm(k), dm(k) are sequences of matrices of
T × r dimension (r is the rank of the corresponding vector-
valued stationary sequences).

These factorizations and the Parseval equality give us a
possibility to represent the mean square error of the linear
estimate Âζ of the functional Aζ in the form

∆(h;F,G) = E
∣∣∣Aζ − Âζ

∣∣∣2 =

=

∞∑
m=0

h(m,n)∑
l=1

1

2π

∫ π

−π

[
Al

m(λ)⊤Gm(λ)Al
m(λ)+

+
[
Al

m(λ)− hlm(λ)
]⊤

[Fm(λ) +Gm(λ)] [Al
m(λ)− hlm(λ)]−

−
[
Al

m(λ)− hlm(λ)
]⊤
Gm(λ)Al

m(λ)−

−Al
m(λ)⊤Gm(λ)[Al

m(λ)− hlm(λ)]

]
dλ =

=

∞∑
m=0

h(m,n)∑
l=1

[ ∥∥Ψma
l
m

∥∥2 + ∥∥Dm(alm − hlm)
∥∥2 −

−
⟨
Ψm(alm − hlm),Ψma

l
m

⟩
−
⟨
Ψma

l
m,Ψm(alm − hlm)

⟩ ]
,

(8)
where the following notions are used

∥∥Ψma
l
m

∥∥2 =
∞∑
k=0

∥∥(Ψma
l
m)k

∥∥2 ,
∥∥Dm(alm − hlm)

∥∥2 =
∞∑
k=0

∥∥(Dm(alm − hlm)k
∥∥2 ,

(Ψma
l
m)k =

k∑
j=0

ψm(k − j)⊤a⃗lm(j),

(Dm(alm − hlm))k =
k∑

j=0

dm(k − j)⊤(⃗alm(j)− h⃗lm(j)),

⟨
Ψm(alm − hlm),Ψma

l
m

⟩
=

=

∞∑
k=0

⟨
(Ψm(alm − hlm))k, (Ψma

l
m)k

⟩
.

The spectral characteristic h(F,G) of the mean square
optimal linear estimate Âζ of the functional Aζ minimizes
the value of the mean square error. In the case where ma-
trices of spectral densities Gm(λ) are regular and matri-
ces of spectral densities Gm(λ) and Fm(λ) + Gm(λ) ad-
mit the canonical factorizations (6), (7) we can find mini-
mum of the obtained expression (8) of the mean square er-
ror with respect to hlm and represent the mean square error
∆(F,G) = ∆(h(F,G);F,G) of the optimal linear estimate
Âζ of the functional Aζ in the form

∆(F,G) =

∞∑
m=0

h(m,n)∑
l=1

[∥∥Ψma
l
m

∥∥2 − ∥∥B∗
mΨ∗

mΨma
l
m

∥∥2] =
=

∞∑
m=0

h(m,n)∑
l=1

[⟨
clm(G), alm

⟩
−
∥∥Cl

m(G)b∗m
∥∥2] . (9)
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Here

∥∥B∗
mΨ∗

mΨma
l
m

∥∥2 =
∞∑
k=0

∥∥(B∗
mΨ∗

mΨma
l
m)k

∥∥2 ,
(B∗

mΨ∗
mΨma

l
m)k =

∞∑
j=0

bm(j)(Ψ∗
mΨma

l
m)j+k,

⟨
clm(G), alm

⟩
=

∞∑
k=0

⟨
clm(G)(k), a⃗lm(k)

⟩
,

clm(G)(k) = (Ψ∗
mΨma

l
m)k =

∞∑
j=0

ψm(j)(Ψma
l
m)j+k,

∥∥Cl
m(G)b∗m

∥∥2 =
∞∑
k=0

∥∥(Cl
m(G)b∗m)k

∥∥2 ,
(Cl

m(G)b∗m)k =
∞∑
j=0

bm(j)clm(G)(j + k),

bm(λ) =
{
bijm(λ)

}j=1,T

i=1,r
are matrix-valued functions which

satisfy equation
bm(λ)dm(λ) = E.

The spectral characteristic h(F,G) of the mean square opti-
mal linear estimate Âζ of the functionalAζ can be calculated
by the formula

hlm(F,G) = Al
m(λ)− bm(λ)⊤(Cl

m(G)b∗m)(λ), (10)

(Cl
m(G)b∗m)(λ) =

∞∑
k=0

(Cl
m(G)b∗m)ke

−ikλ.

In the case where matrices of spectral densities Fm(λ)
are regular and matrices of spectral densities Fm(λ) and
Fm(λ) + Gm(λ) admit the canonical factorizations (5), (7)
the mean square error ∆(F,G) = ∆(h(F,G);F,G) and the
spectral characteristic h(F,G) of the optimal linear estimate
Âζ of the functional Aζ can be calculated by the formula

∆(F,G) =

∞∑
m=0

h(m,n)∑
l=1

[⟨
clm(F ), alm

⟩
−

∥∥Cl
m(F )b∗m

∥∥2] ,
(11)

hlm(F,G) = bm(λ)⊤(Cl
m(F )b∗m)(λ), (12)

clm(F )(k) = (Φ∗
mΦma

l
m)k =

∞∑
j=0

φm(j)(Φma
l
m)j+k,

(Φma
l
m)k =

k∑
j=0

φm(k − j)⊤a⃗lm(j),

(Cl
m(F )b∗m)(λ) =

∞∑
k=0

(Cl
m(F )b∗m)ke

−ikλ.

Let us summarize our results and present them in the form of
a statement.

Theorem 1 Let ζ(j, x), j ∈ Z, x ∈ Sn and θ(j, x), j ∈ Z,
x ∈ Sn, be uncorrelated mean-square continuous periodi-
cally correlated with respect to time isotropic on the sphere
Sn random fields, which have spectral densities F (λ) =
{Fm(λ) : m = 0, 1 . . . } and G(λ) = {Gm(λ) : m =

0, 1 . . . }. Let the function a(j, x) which determine the func-
tional Aζ satisfy condition (3). The value of the mean square
error ∆(F,G) = ∆(h(F,G);F,G) and the spectral charac-
teristic h(F,G) of the optimal linear estimate Âζ of the func-
tional Aζ based on observations of the field ζ(j, x) + θ(j, x)
at points j = 0,−1,−2, . . . , x ∈ Sn, can be calculated
by formulas (9), (10) in the case where matrices of spec-
tral densities Gm(λ) and Fm(λ) +Gm(λ) admit the canon-
ical factorizations (6), (7), and by formulas (11), (12) in
the case where matrices of spectral densities Fm(λ) and
Fm(λ) +Gm(λ) admit the canonical factorizations (5), (7).

Example 3.1 Consider the problem of least square optimal
linear estimation of the unknown value of the functional

A0ζ =

∫
Sn

a(x)ζ(0, x)mn(dx) =

∞∑
m=0

h(m,n)∑
l=1

almζ
l
m(0),

which depends on unknown values ζ(0, x), x ∈ Sn, of the
random field ζ(j, x), j ∈ Z, x ∈ Sn, and are based on
observations of the field ζ(j, x) + θ(j, x) at points (j, x),
j = −1,−2, . . . , x ∈ Sn.

Let ζ(j, x) and θ(j, x), j ∈ Z, x ∈ Sn be uncorrelated
periodically correlated with respect to time isotropic on the
sphere Sn random fields, which have representations

ζ(j, x) =
∞∑

m=0

h(m,n)∑
l=1

Sl
m(x)ζlm(j),

θ(j, x) =
∞∑

m=0

h(m,n)∑
l=1

Sl
m(x)θlm(j),

where ζlm(j), θlm(j), m = 0, 1, . . . , l = 1, . . . , h(m,n),
are mutually uncorrelated periodically correlated with pe-
riod T = 2 stochastic sequences of the form

ζlm(j) = ξlm0(j) + eπijξlm1(j),

θlm(j) = ηlm0(j) + eπijηlm1(j),

ξlm0(j), m = 0, 1, . . . , l = 1, . . . , h(m,n), are uncorrelated
stationary Ornstein-Uhlenbeck stochastic sequences with the
spectral densities

fm0(λ) = α2
m · 5/4

2π|1− (1/2)e−iλ|2
,

ξlm1(j), m = 0, 1, . . . , l = 1, . . . , h(m,n), are uncorrelated
with ξlm0(j) mutually uncorrelated stationary stochastic se-
quences with the spectral densities

fm2(λ) = α2
m · 3

2π
|1 + eiλ|2,

ηlm0(j) and ηlm1(j), m = 0, 1, . . . , l = 1, . . . , h(m,n),
are mutually uncorrelated stationary white noise stochastic
sequences with the spectral densities gmo(λ) = α2

m · 3
2π ,

gm1(λ) = α2
m · 2

π . For all densities coefficients α2
m are such

that
∑∞

m=0h(m,n)α
2
m <∞.

It follows from the proposed relations that the optimal lin-
ear estimate Â0ζ of the functional A0ζ is calculated by the
formula

Â0ζ =
∞∑

m=0

h(m,n)∑
l=1

almαm

[
(3/2)

3/2 (
ξlm0(0) + ηlm0(0)

)
+
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+(1/3)
(
ξlm1(0) + ηlm1(0)

)
+

+(3/2)
1/2 1367

3456

(
ξlm0(−1) + ηlm0(−1)

)
+

+(2/9)
(
ξlm1(−1) + ηlm1(−1)

)
+

+(3/2)
1/2 1367

6912

(
ξlm0(−2) + ηlm0(−2)

)
−

− (2/9)
(
ξlm1(−2) + ηlm1(−2)

)
+

+2
∞∑
k=3

(−1)k−1

3k+1

(
ξlm1(−k) + ηlm1(−k)

) ]
.

The value of the mean square error ∆(F,G) = E|A0ζ −
Â0ζ|2 of the optimal linear estimate Â0ζ of the functional
A0ζ is calculated by formula

∆(F,G) =
1

ωn

∞∑
m=0

h(m,n)∑
l=1

(
almαm

)2 · (0.596).
4 Minimax-robust method of filtering

The derived formulas may be employed in finding the
mean square error ∆(F,G) = ∆(h(F,G);F,G) and the
spectral characteristic h(F,G) of the optimal linear estimate
Âζ of the functional Aζ based on observations of the field
ζ(j, x) + θ(j, x) at points j = 0,−1,−2, . . . , x ∈ Sn, un-
der the condition that matrices of spectral densities F (λ) =
{Fm(λ) : m = 0, 1 . . . } and G(λ) = {Gm(λ) : m =
0, 1 . . . } of the field ζ(j, x) and the field θ(j, x) are exactly
known.

In the case where the densities are not known exactly,
but a set D = DF × DG of admissible spectral densities
is given, the minimax (robust) approach to estimation
of functionals of the unknown values of random fields
is reasonable. Instead of searching an estimate that is
optimal for a given spectral densities we find an estimate
that minimizes the mean square error for all spectral den-
sities F (λ), G(λ) from given classDF ×DG simultaneously.

Definition 1 For a given class of spectral densities D =
DF ×DG spectral densities F 0(λ) ∈ DF and G0(λ) ∈ DG

are called least favorable for the optimal linear estimation of
the functional Aζ if the following relation holds true

∆(h(F 0, G0);F 0, G0) = max
(F,G)∈DF×DG

∆(h(F,G);F,G).

Definition 2 For a given class of spectral densities D =
DF × DG the spectral characteristic h0(λ) of the optimal
linear estimate of the functional Aζ is called minimax-robust
if there are satisfied conditions

h0(λ) ∈ HD = ∩(F,G)∈DF×DG
L−
2 (F +G),

min
h∈HD

max
(F,G)∈DF×DG

∆(h;F,G) = max
(F,G)∈DF×DG

∆(h0;F,G).

It follows from these Definitions and the above Theorem
that the next Lemmas hold true.

Lema 1 Spectral densities F 0(λ) ∈ DF and G0(λ) ∈ DG

which admit the canonical factorizations (5) – (7) are least
favorable in the class DF ×DG for the optimal linear filter-
ing of the functionalAζ if coefficients of the canonical factor-
izations give a solution to the conditional extremum problem

∞∑
m=0

h(m,n)∑
l=1

[⟨
clm(G), alm

⟩
−
∥∥Cl

m(G)b∗m
∥∥2] → sup, (13)

Gm(λ) =

[ ∞∑
k=0

ψm(k)e−ikλ

][ ∞∑
k=0

ψm(k)e−ikλ

]∗

∈ DG,

Fm(λ) =

[ ∞∑
k=0

dm(k)e−ikλ

][ ∞∑
k=0

dm(k)e−ikλ

]∗

−

−

[ ∞∑
k=0

ψm(k)e−ikλ

][ ∞∑
k=0

ψm(k)e−ikλ

]∗

∈ DF ,

or the conditional extremum problem

∞∑
m=0

h(m,n)∑
l=1

[⟨
clm(F ), alm

⟩
−
∥∥Cl

m(F )b∗m
∥∥2] → sup, (14)

Fm(λ) =

[ ∞∑
k=0

φm(k)e−ikλ

][ ∞∑
k=0

φm(k)e−ikλ

]∗

∈ DF ,

Gm(λ) =

[ ∞∑
k=0

dm(k)e−ikλ

][ ∞∑
k=0

dm(k)e−ikλ

]∗

−

−

[ ∞∑
k=0

φm(k)e−ikλ

][ ∞∑
k=0

φm(k)e−ikλ

]∗

∈ DG.

The minimax spectral characteristic h0 = h(F 0, G0) is cal-
culated by formula (10) (or (12)) if the condition h0 =
h(F 0, G0) ∈ HD holds true.

In the case where one of the densities is known the condi-
tional extremum problems (13), (14) are extremum problems
with respect to coefficients bm(k) only.

Lema 2 Spectral density F 0(λ) ∈ DF which admits the
canonical factorizations (5), (7) with a given regular spec-
tral density G(λ) is least favorable in the class DF for the
optimal linear filtering of the functional Aζ if

F 0
m(λ)+Gm(λ) =

[ ∞∑
k=0

d0m(k)e−ikλ

][ ∞∑
k=0

d0m(k)e−ikλ

]∗

.

Coefficients d0m(k) are determined by decomposition of the
matrix function b0m(λ):

b0m(λ)d0m(λ) = E, b0m(λ) =

∞∑
k=0

b0m(k)e−ikλ,

where coefficients b0m(k) give a solution to the conditional
extremum problem

∞∑
m=0

h(m,n)∑
l=1

∥∥Cl
m(G)b∗m

∥∥2 → inf, (15)

[ ∞∑
k=0

dm(k)e−ikλ

][ ∞∑
k=0

dm(k)e−ikλ

]∗

−Gm(λ) ∈ DF .

The minimax spectral characteristic h0 = h(F 0, G) is calcu-
lated by formula (12) if the condition h0 = h(F 0, G) ∈ HD

holds true.
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Lema 3 Spectral density G0(λ) ∈ DG which admits the
canonical factorizations (6), (7) with a given regular spec-
tral density F (λ) is least favorable in the class DG for the
optimal linear filtering of the functional Aζ if

Fm(λ)+G0
m(λ) =

[ ∞∑
k=0

d0m(k)e−ikλ

][ ∞∑
k=0

d0m(k)e−ikλ

]∗

.

Coefficients d0m(k) are determined by decomposition of the
matrix function b0m(λ):

b0m(λ)d0m(λ) = E, b0m(λ) =
∞∑
k=0

b0m(k)e−ikλ,

where coefficients b0m(k) give a solution to the conditional
extremum problem

∞∑
m=0

h(m,n)∑
l=1

∥∥Cl
m(F )b∗m

∥∥2 → inf, (16)

[ ∞∑
k=0

dm(k)e−ikλ

][ ∞∑
k=0

dm(k)e−ikλ

]∗

− Fm(λ) ∈ DG.

The minimax spectral characteristic h0 = h(F,G0) is calcu-
lated by formula (10) if the condition h0 = h(F,G0) ∈ HD

holds true.

The least favorable spectral densities F 0(λ), G0(λ) and
the minimax (robust) spectral characteristic h0(λ) ∈ HD

form a saddle point of the function ∆(h;F,G) on the set
HD × D. The saddle point inequalities hold true if h0 =
h(F 0, G0) ∈ HD, where (F 0, G0) is a solution to the condi-
tional extremum problem

∆(h(F 0, G0);F 0, G0) = sup
(F,G)∈D

∆(h(F 0, G0);F,G),

(17)
where

∆(h(F 0, G0);F,G) =

=
∞∑

m=0

h(m,n)∑
l=1

1

2π

∫ π

−π

{[
(Cl

m(G)b∗m)(λ)
]⊤
b0(λ)Fm(λ)

(b0(λ))∗(Cl
m(G)b∗m)(λ)dλ+

[
(Cl

m(F )b∗m)(λ)
]⊤
b0(λ)Gm(λ)(b0(λ))∗(Cl

m(F )b∗m)(λ)

}
dλ,

The conditional extremum problem (17) is equivalent to
the unconditional extremum problem

∆D(F,G) = −∆(h(F 0, G0);F,G) + δ((F,G)|D) → inf,
(18)

where δ((F,G)|D) is the indicator function of the set D.
Solution to this unconditional extremum problem (18) is

characterized by the condition 0 ∈ ∂∆D(F 0, G0), where
∂∆D(F 0, G0) is the subdifferential of the convex functional
∆D(F,G) at point (F 0, G0).

With the help of condition 0 ∈ ∂∆D(f0, g0) we can find
the least favorable spectral densities in some special classes
of spectral densities (see books by Moklyachuk [27], Mokly-
achuk and Masyutka [28] for more details).

5 Least favorable spectral densities in
the class D0

F ×D0
G

Consider the problem of the optimal linear estimation of
the functionalAζ based on observations of the field ζ(j, x)+
θ(j, x) at points j = 0,−1,−2, . . . , x ∈ Sn, under the con-
dition that matrices of spectral densities F (λ) = {Fm(λ) :
m = 0, 1 . . . } and G(λ) = {Gm(λ) : m = 0, 1 . . . } of the
field ζ(j, x) and the field θ(j, x) are not known exactly, but
the following pair of sets of possible spectral densities are
given

D0
F =

{
F (λ)| 1

2πωn

∞∑
m=0

h(m,n)

∫ π

−π

Fm(λ)dλ = P

}
,

D0
G =

{
G(λ)| 1

2πωn

∞∑
m=0

h(m,n)

∫ π

−π

Gm(λ)dλ = Q

}
,

where P and Q are given positive definite matrices.
Making use the method of Lagrange multipliers and the

form of sets D0
F and D0

G we can conclude that the condition
0 ∈ ∂∆D(F 0, G0) is satisfied for D = D0

F × D0
G if com-

ponents of the spectral densities F 0(λ) = {F 0
m(λ) : m =

0, 1 . . . } and G0(λ) = {G0
m(λ) : m = 0, 1 . . . } satisfy the

following pairs of equations

h(m,n)∑
l=1

(Cl
m(G0)b0m)(λ)(Cl

m(G0)b0m)(λ))∗ =

= d0m(λ)⊤β⃗mβ⃗
∗
md

0
m(λ), (19)

h(m,n)∑
l=1

(Cl
m(F 0)b0m)(λ)(Cl

m(F 0)b0m)(λ))∗ =

= d0m(λ)⊤γ⃗mγ⃗
∗
md

0
m(λ). (20)

The unknown Lagrange multipliers β⃗m = {βmk, k =
0, . . . , T − 1} and γ⃗m = {γmk, k = 0, . . . , T − 1} are
calculated using the canonical factorization equations (5) –
(7), conditions (13), (14) and restrictions which determine
the corresponding sets of spectral densities.

Theorem 2 Let condition (3) be satisfied. Least favorable
spectral densities F 0(λ) ∈ D0

F , G0(λ) ∈ D0
G for the op-

timal linear estimation of the functional Aζ are determined
relations (19), (20), (5) – (7), (13), (14).

In the case where matrices of spectral densities G(λ) are
known the least favorable spectral densities F 0(λ) ∈ D0

F are
determined by relations (19), (6), (7), (15).

In the case where matrices of spectral densities F (λ) are
known the least favorable spectral densitiesG0(λ) ∈ D0

G are
determined by relations (20), (5), (7), (16).

The minimax spectral characteristic h0 = h(F0, G0) of
the optimal linear estimation of the functional is calculated
by formulas (10), (12).

Example 5.1 Consider the problem of least square optimal
linear estimation of the unknown value of the functional

A0ζ =

∫
Sn

a(x)ζ(0, x)mn(dx) =
∞∑

m=0

h(m,n)∑
l=1

almζ
l
m(0),

which depends on unknown values ζ(0, x), x ∈ Sn of the
random field ζ(j, x), j ∈ Z, x ∈ Sn and are based on
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observations of the field ζ(j, x) + θ(j, x) at points (j, x),
j = −1,−2, . . . , x ∈ Sn.

Let ζ(j, x) and θ(j, x), j ∈ Z, x ∈ Sn be uncorrelated
periodically correlated with respect to time isotropic on the
sphere Sn random fields, which have representations

ζ(j, x) =

∞∑
m=0

h(m,n)∑
l=1

Sl
m(x)ζlm(j),

θ(j, x) =

∞∑
m=0

h(m,n)∑
l=1

Sl
m(x)θlm(j),

where ζlm(j), θlm(j) are mutually uncorrelated periodically
correlated with period T = 1 stochastic sequences, spectral
densitiesGm(λ) = α2

m·|1−
√
2e−iλ|2,

∑∞
m=0h(m,n)α

2
m <

∞ are known and fixed, spectral densities Fm(λ) are of the
form Fm(λ) = α2

m ·F (λ), spectral density F (λ) is unknown
and such that 1

2π

∫ π

−π
F (λ)dλ = 5.

Coefficients {b(0), b(1)} which gives a solution to the con-
ditional extremum problem (3b(0)−

√
2b(1))2 + 2b2(0) → min,[

b2(0)− b2(1)
]
=

1

8
.

determine the least favorable spectral density F 0
m(λ) ∈ D0

F

for the optimal linear estimation of the functional A0ζ

F 0
m(λ) = α2

m

16

3

∣∣∣∣∣1−
√
2

2
e−iλ

∣∣∣∣∣
2

−
∣∣∣1−√

2e−iλ
∣∣∣2
 .

The minimax-robust linear estimate Â0ζ of the functional
A0ζ is calculated by the formula

Â0ζ =

∞∑
m=0

h(m,n)∑
l=1

almαm

[
(1/2)

(
ξlm0(0) + ηlm0(0)

)
+

+(1/4)
(
ξlm0(−2) + ηlm0(−2)

) ]
.

The value of the mean square error ∆(F,G) = E|A0ζ −
Â0ζ|2 of the optimal linear estimate Â0ζ of the functional
A0ζ is calculated by formula

∆(F,G) =
1

ωn

∞∑
m=0

h(m,n)∑
l=1

(
almαm

)2 · (2.5).
Example 5.2 Consider the problem of least square optimal
linear estimation of the unknown value of the functional

A1ζ =

∫
Sn

[a(0, x)ζ(0, x) + a(1, x)ζ(−1, x)]mn(dx) =

=
∞∑

m=0

h(m,n)∑
l=1

alm

[
7

2
ζlm(−1)−

√
23

2
ζlm(0)

]
which depends on unknown values ζ(0, x), ζ(−1, x), x ∈ Sn,
of the random field ζ(j, x), j ∈ Z, x ∈ Sn and are based
on observations of the field ζ(j, x) + θ(j, x) at points (j, x),
j = −1,−2, . . . , x ∈ Sn, and where the function a(j, x) is

such that alm(1) = 7
2a

l
m, alm(0) = −

√
23
2 a

l
m.

Let ζ(j, x) and θ(j, x), j ∈ Z, x ∈ Sn be uncorrelated
periodically correlated with respect to time isotropic on the
sphere Sn random fields, which have representations

ζ(j, x) =
∞∑

m=0

h(m,n)∑
l=1

Sl
m(x)ζlm(j),

θ(j, x) =
∞∑

m=0

h(m,n)∑
l=1

Sl
m(x)θlm(j),

where ζlm(j), θlm(j) are mutually uncorrelated periodically
correlated with period T = 2 stochastic sequences, spec-
tral densities Gm(λ) = α2

m · I2, I2 is the identity matrix,∑∞
m=0h(m,n)α

2
m < ∞, are given and fixed, spectral den-

sities Fm(λ) are of the form Fm(λ) = α2
m · F (λ), spectral

density F (λ) is unknown and such that 1
2π

∫ π

−π
F (λ)dλ =(

2 6
6 11

)
.

Coefficients {b(0), b(1)} which gives a solution to the con-
ditional extremum problem

[
b(0)

[√
23√
2
,

√
23√
2

]⊤

− b(1)

[
7

2
,−7

2

]⊤
]

×
[
b∗(0)

[√
23√
2
,

√
23√
2

]
− b∗(1)

[
7

2
,−7

2

]]
+

+

[
b(0)

[
7

2
,−7

2

]⊤
][

b∗(0)

[
7

2
,−7

2

]]
→ min,[

I2 + b(1)(I2 + P )b∗(1)− b(0)(I2 + P )b∗(0)

]
=

(
0 0
0 0

)
.

determine the least favorable spectral density Fm0(λ) ∈
D0

F for the optimal linear estimation of the functional A1ζ

F 0
m(λ) = α2

m

{(
2 6
6 11

)
− 178

√
23

10569

(
1 2
2 4

)
(e

−iλ
2 + e

iλ
2 )

}
.

The minimax-robust linear estimate Â1ζ of the functional
A1ζ is calculated by the formula

Â1ζ =
∞∑

m=0

h(m,n)∑
l=1

almαm

[
(−3.23)

(
ξlm0(0) + ηlm0(0)

)
−

−(3.61)
(
ξlm1(0) + ηlm1(0)

)
+(7.14)

(
ξlm0(−1) + ηlm0(−1)

)
− (6.74)

(
ξlm1(−1) + ηlm1(−1)

) ]
.

The value of the mean square error ∆(F,G) = E|A1ζ −
Â1ζ|2 of the optimal linear estimate Â1ζ of the functional
A1ζ is calculated by formula

∆(F,G) =
1

ωn

∞∑
m=0

h(m,n)∑
l=1

(
almαm

)2 · (23.37).
6 Conclusions

We propose a method of solution the problem of optimal
linear estimation of functionals

Aζ =

∞∑
j=0

∫
Sn

a(j, x)ζ(−j, x)mn(dx)
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depending on unknown values of a periodically correlated
with respect to time isotropic on the sphere Sn in Euclidean
space En random field ζ(j, x), j ∈ Z, x ∈ Sn. Estimates are
based on observations of the field ζ(j, x) + θ(j, x) at points
j = 0,−1,−2, . . . , x ∈ Sn, where θ(j, x) is an uncorre-
lated with ζ(j, x) periodically correlated with respect to time
isotropic on the sphere Sn random field. We propose a repre-
sentation of the mean square error in the form of linear func-
tional in the space L1 × L1 with respect to spectral densities
(F,G), which allows us to solve the corresponding condi-
tional extremum problem and describe the minimax (robust)
estimates of the functional.

Formulas for computing the value of the mean-square er-
ror and the spectral characteristic of the optimal linear esti-
mate of the functional Aζ are obtained. The least favorable
spectral densities and the minimax (robust) spectral charac-
teristics of the optimal estimates of the functional Aζ are de-
termined for some special classes of spectral densities.
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