Universal Journal of Physics and Application Vol. 7(4), pp. 380 - 391
DOI: 10.13189/ujpa.2013.010404
Reprint (PDF) (428Kb)

Stefan-Boltzmann’S Law under Relativistic Conditions; Generalized Case

E.V.Veitsman *
Veitsman’s Science Project, 28 Apartment, 5 Klimashkin Str., Moscow, 123557, Russia


An expression was obtained for the energy density of the moving black-body radiation, i.e., the Stefan-Boltzmann law valid in the interval of object velocities from zero to the velocity of light in vacuo. The object temperature is shown to comprise two parts. The first one is a scalar invariant under the Lorentz transformations. The second one is a vector depending on the velocity of system motion. The scalar component of the temperature is a contraction of two tensor components of rank 3. Under normal conditions this mathematical object is a scalar. Taking account of a tensor character of the temperature a new formulation is given for the second thermodynamics law. The results obtained are of the great practical importance, in particular, while designing devices to measure the radiation temperature of moving cosmic objects, e.g., quasars.

Black Body, Radiation, Stefan-Boltzmann Law, Temperature, Special Relativity

Cite this paper
E.V.Veitsman . "Stefan-Boltzmann’S Law under Relativistic Conditions; Generalized Case." Universal Journal of Physics and Application 7.4 (2013) 380 - 391. doi: 10.13189/ujpa.2013.010404.