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Abstract  A theoretical study of seismic waves 
propagation in a soil layer with a free surface has a great 
importance for a prediction in engineering decisions. Wave 
packets are radiated from an earthquake source and transfer 
energy. A transformation and a selection of wave packets 
occur in a process of wave propagating that why waves 
which arrive in a layer have a length considerably greater 
than a variation scale of heterogeneity in a medium in a 
layer near free surface. In the case, when the properties of 
different layers affect a relatively small degree on a 
behavior of the waves, an approximation of effective 
medium gives a fairly good solution. A model of a 
hypoplastic medium is used for a describing of some 
effects, which are observed in the time of seismic wave 
propagation. The model of hypoplastic medium allows 
describing many effects which are observed in granular 
soils. We consider a successive application of effective 
medium and ray methods in order to receive of 
approximate analytical solutions wishing to describe shear 
wave propagation in stratified layer, which lies on a 
half-space. 

Keywords  Wave Propagation, Hypoplastic Medium, 
Ray Method, Stratified Layer, Hypoplastic Model 

1. Introduction
The model of elastic stratified medium widely is applied 

in seismology geotechnique [1-4]. In the case, when a 
medium constitutes from discrete layers, then it is 
necessary to solve the boundary problem for each layer. It 
is enough a laborious investigation [5]. The dynamic 
equations for inhomogeneous media are the differential 
equations with variable coefficients. As it is known for 
solving of these equations there are no general analytical 
methods. The most famous methods which are applied for 

solving of differential dynamical equations for 
inhomogeneous media are a ray method [6] and method of 
effective medium [7]. Some time ago a hypoplastic model 
was applied for an investigation of seismic wave 
propagation in a soil [8, 9]. The model of hypoplastic 
medium allows describing many effects which are 
observed in granular soils. We consider a successive 
application of effective medium and ray methods in order 
to receive of approximate analytical solutions for 
description of shear wave propagation in stratified layer, 
which lies on a half - space. 

As it is known a real soil is inhomogeneous, is usually 
stratified in a depth. We take the model of effective 
medium which has the same macroscopic properties as real 
inhomogeneous medium. The effective model can be 
received on a basic of experimental results in the form of 
phenomenological theory or on a basic of theoretical 
accounts. We take as effective model a hypoplastic 
medium [8, 9], which describes a medium with initial 
stresses increased in depth linearly. It is correct if a 
thickness of each layer is comparatively less than a 
thickness of a great layer. 

For a solving of constitutive phenomenological 
equations, we apply a ray method. An application of this 
method is correct if a wave length (or a width of a wave 
packet) is less than a variation scale of effective properties. 
It is mean that macroscopic properties change 
monotonically in a depth. 

2. Formulation of Problem
The layer of stratified granule medium lies on the 

surface 101 xx ≥  (Fig. 1). A thickness of the layer is L . 

At 0=t  the plane 101 xx =  (the surface 0S ) the wave 

begins to move with the velocity ),( 10 txϑϑ =  in the 

directions 2x . Then there is the plane shear wave which 
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propagates in the direction 1x . At first we consider a 
propagation of energy in any layer. 
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x1+l1+l2

x2

L

x1

 

Figure 1.  The stratified layer L which lies on half-space 10xx <  

A propagation of wave packet in continuum is described 
of the first law of thermodynamic [10] 

WQUK +=+  ,     (1) 

where dVK
V

ρϑϑ∫ ⋅=
2
1  is a kinetic energy, dVuU

V

ρ∫=  

is an internal energy, ),( txu is a specific internal energy 
of unit mass, { }dSvttrdVFW

S
n

V
∫∫ ⋅+⋅= rϑ  is a 

power of generalized mass forces 
kF  and surface forces 

t , Q  is heat power. 

For constant density and isothermical processes 

( ) { } dSntdVFdSttrdVFUK
dt
d

S
jiij

V
ii

S
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V
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where ijt  is stress tensor. 

Let V  be a volume of current pipe, S  is a surface of current pipe (Fig. 2) then we obtain 
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Figure 2.  The ray pipe, which is formed by rays 

Used a theorem about an average to the integrals in Eq. 1, we obtain [11] 

( ) ( ) dttdttrdFUK
dt
d

ijijjiij ϑϑ ∇−+⋅=+ , , 

where first member rdF ⋅  in right part is a work density of mass forces, second member dtt jiij ),( ϑ  is a work 

density of surface forces, third member dtt ijij ϑ∇−  is density of internal surface forces. 

We have used the Eq. 3 in pure mechanical formulation (without a registration of a mechanic energy transformation to 
thermal energy and either kinds of energy). 
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The Umov’s – Poyinting’s vector P  (а density of flow 
energy) describes a direction of energy transmission in a 
medium. 

Lines of energy flow are found from the equation [12] 

,
P
P

ds
rd

== τ  ,iijj tP ϑ=   2,1, =ji   (4) 

where ),,( zyxr  is radius vector of a point on an energy 

flow line, s  is a distance along a flow line, τ  is unit 

tangential of the vector to a flow line, ijt  is stress tensor, 

iϑ  is a velocity vector. 

A variation of the vector τ  along a flow line is 
described of the formula 

,nk
ds
d

=
τ

 ,/1 Rk =   (5) 

where n  is normal vector, k  is curvature of a flow line, 
R  is curvature radius of a flow line. 

A flow line curvature depends on medium parameters. 
We must set boundary conditions for each layer. 

3. Shear Wave Propagation in 
Stratified Granular Layer with 
Effective Hypoplastic Properties 

Let a layer of a thickness L  be on a half-space 

101 xx ≤ . The layer L  constitutive from some layers of 

thicknesses ),...,2,1( nili = , it being know that ,Lli <<  
),...,2,1( ni = . For example, it may be an interchange of 

layers of sand and clay (Fig. 1). 
Let a shear wave (SH) be to incidences on a plane 

boundary 101 xx =  and is propagated from the half-space 

101 xx < . If we want to solve the problem exactly we must 
set boundary conditions (or connected conditions) and 
describe wave propagation for each layer. There are very 
unwieldy expressions especially for multiple scattered 
waves. 

A method of effective medium allows obtaining a 
solution of this problem [7]. Applied an averaging method 
(method of homogenization or energy continuation) we 
obtain a phenomenological model of inhomogeneous 
medium [7]. 

Suppose that macroscopic (effective) conditions of layer 
medium are described of the equations of a hypoplastic 
medium [8, 9]. 

In general case the equations of wave propagation in 
hypoplastic medium have the form [6, 7] 

,Div *

dt
dfT ϑρρ =+    (6) 

where f  is a mass force vector, ϑρ  is a vector of 

quantity of motion, ϑ  is a rate vector, 
e

e sl

+
+

=
1

* ρρρ  

is effective (average) density, lρ  and sρ  are densities 
of liquid and hard fraction in a soil respectively, T  is a 
tensor of effective (total) stresses in an inhomogeneous 
medium, e  is a pore quantity. 

The kinetic equations we write in the form of 
constitutive equations of a hypo plasticity [8, 9] 

),,,( eDTHT =


    (7) 

where 


T  is Jaunman’s derivative time. 

,TTTT ωω −−= 


   (8) 

in (8) T  is material derivative time, D  and ω  are a 
tensor of rate and a spin tensor respectively. 
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A density *ρ  satisfies the equation of continuity  

( ) ,0div *
*

=+ ϑρρ
dt

d
   (10) 

and pore quantity e  satisfies the equation 

.)1( trDee +=     (11) 

We represent the each field value ),( txTij , ),( txiiϑ , 

),( txui , ),( txρ , ),( txe  which describes a 
dynamical state in hypoplastic medium in the form of the 
sum 

TTT ~+= ° , ϑϑϑ ~
+= ° , uuu ~+= ° , 

ρρρ ~* += ° , eee ~* += ° , 

where °T , °ϑ , °u , °ρ , °e  describe initial state and 

T~ , ϑ~ , u~ , ρ~ , e~  describe disturbances. 

The initial stresses ),( txT °  satisfies to the equations 
of equilibrium 

,0 gradDiv =+− °° fPT l r    (12) 

then the equations for disturbances have the form 

, gradDiv
dt

dPT l
rϑ

=−      (13) 

Here and in the future the sign ~ we do not write. 
Let Eq. (7) be the form 

||||),(),( DeTNDeTLT +=


  (14) 
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The expression (14) is written in nonindex form (directly designation). In the index form the members of equation (14) 
have form 
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where αe  is the minimal possible void ratio, ce  is the critical void ratio, ie  is void ratio in the least state, L, β, n, h are 

material parameters, cϕ  is the friction angle in critical state. For example, in Table 1 the constitutive hypoplastic 
parameters of Hochstetten sand are given [8, 9]. 

Table 1.  Hypoplastic parameters of Hochstetten sand [8, 9] 

][°ϕc  sh  [MPa] °αe  °ce  °ie  L β  h 

33 1000 0,95 0,55 1,05 0,25 1,5 0,25 

The equation for disturbances follows from Eq. 9 for case when *
ijT


 is not enough 

||||),(),( DeTNDeTLT °° += .       (21) 

Therefore the Eqs. 5, 6, 8, 10 describe a disturbance propagation in hypoplastic medium. 

4. Shear Wave Propagation in Effective Hypoplastic Medium 
Set initial and boundary conditions on plane 

101 xx =  in the form 

),0,(),( 12012 xtx t ϑϑ ==  ),,(),( 10212 101
txtx xx ϑϑ ==     (22) 

),0,(),( 1120112 xTtxT t ==  ),,(),( 1012112 101
txTtxT xx ==      (23) 

The motion equation Eq. 8 in this case has the form 
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The coefficients iK  we write analogous [6, 7] in the form 

Suppose that for an initial state it has place the condition 0)( 112 =° xT  we obtain: 

,0

,0

1

2
6

22

1

2
2

1

11

=
∂
∂

−
∂
∂

=
∂
∂

−
∂
∂

x
K

t
T

x
K

x
T

ϑ

ϑ

  

.0

,0

1

2
8

33

1

2
3

12

=
∂
∂

−
∂
∂

=
∂
∂

−
∂
∂

x
K

t
T

x
K

t
T

ϑ

ϑ

       (25) 

Combined Eq. 24, Eq. 25, Eq. 21 we obtain the equations for wave disturbance propagation in the layer with effective 
properties 
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5. Solving of Equations of Shear Wave Propagation in Layer 
The differential equations Eq. 26, Eq. 27 have variable coefficients. There are no general analytical methods for a 

solving of similar equations. The ray method is the most effective among different asymptotic methods for solving of 
differential equations with variable coefficients [6]. 

For nonstationary waves an application of this method is correct, if a wave length λ  is much less than a variable of a 
scale of effective layer parameters. It has place if an inhomogeneity of a layer changes in a depth monotonic. 

It is known that usually a stiffness of a layer changes local nonmonotonic in a depth, but effective stiffness is monotonic 
function of spatial coordinate in a depth. 

Let the coefficients )(),( 11 xxKi ρ  in the equations Eq. 26, Eq. 27 be are effective parameters of medium and a scale 

of variable iK , ρ  is more greater than a wave length. An effective approximation gives us principal estimation of 
wave field values caused of integral (average) conditions of real medium. 

Write the solution of the equations Eq. 26, Eq. 27 in the form 
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2 xTx nnϑ  are unknown quantities. 
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If ( )( ) ( )[ ]
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=−  then ray series Eq. 29, Eq. 30 have form 
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If 0f  is Heaviside function )(τH  then nf  has form 
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Substituted Eq. 32, Eq. 33 into Eq. 26, Eq. 27 we obtain 
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For 0<n  it must be 0)(
2 =nϑ , 0)(

12 =nT  because the coefficient at 0f  is equal 0. 
From Eq. 35, Eq. 36 it follows 
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For 1−=n  we obtain 0)(
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2 ≠ϑ , 0)0(

12 ≠T  and therefore from Eq. 37, Eq. 38 it follows 
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where ( )1
2 xCS
−  is a velocity of shear wave. 

The solution of Eq. 39 is written in the form 
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In the formula Eq. 40 we take the sign “+” for waves which propagate in the direction + 1x  and the sign “–” for waves 

in direction – 1x . 

Substituted Eq. 40 into Eq. 37, Eq. 38 we obtain the equations of transfer for )( 1
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In formulas Eq. 41, Eq. 43 the members at 0=n  are principal because they describe main part of wave energy. 
Supposed 0,1−=n  in the equations Eq. 37, Eq. 38 we obtain the equations Eq. 39, Eq. 40 and the equations of transfer 
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or transformed we obtain the law of conversation of energy along ray pipes 
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Chose a ray pipe in the form of a cylinder with area of a base 0dS  and with an altitude L  Fig. 3. 

L

dS0

dSL

 
Figure 3.  The ray pipe in the layer L, which is perpendicularity to free surface of half-space 

The expressions 47, 48 in 3-D case are written in the form  
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where vgradk ψϑ = , σσ ψgradk = , )0(
2P  and )0(

12P  
are the vectors of flow density of energy. 

Integrated Eq. 49, Eq. 50 on a volume of ray pipe and 
applied Gauss theorem we obtain 
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where S  is closed surface of ray pipe, n  is normal 
vector to S  [17] 

From Eq. 51 follow the conditions  
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where dS  is the area of a base of ray pipe at 101 xx =  

and LdS  is an area of upper base of ray pipe at 

Lxx += 101 . 

As LdSdS =)0(  so obtain the law conversation of low 

density of energy 
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The solutions of the Eqs. 45, 46 have the form 
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Let initial impulse be an impulse function )(0 tf  in the 
form 
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where the function ( )τ,0 τJ  is expressed with the help of 
Heaviside function 

( ) ( ) ( )ττ −−= τHτHτJ 000 , .   (57) 

The boundary conditions by 
101 xx =  have the form 
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The wave which comes in the point 1x  is described 
with a registration Eq. 55 in the formulas 
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   (59) 

The conditions Eq. 54 allow to obtain a variation of 
wave profile. With a registration Eq. 58, Eq. 59 we have 

( )

( ) )0(
12

1

1
04

003

3
10

)0(
2

1

1
04

3

003
10

       
)()()(

)()(,

      
)()()(

)()(,

1

10

1

10

Tfor
xC

dxtJ
xxK
xxKtJ

for
xC

dxtJ
xxK
xxKtJ

x

x S

x

x S











−−=











−−=

∫

∫

t
r
rt

Jt
r
rt

 

  (60) 

Integrated on t  the left part of Eq. 60 from O  up to 
( )1xτ  we obtain 
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From Eq. 60, Eq. 62 it follows that if 

1
)()(

)()(
4

10103

113 <
xxK
xxK

ρ
ρ  then a wave profile takes place a 

compression. Therefore, the rate displacement wave has 
the compression and the shear stress wave has the 
decompression (Fig. 4). 
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Figure 4.  Dependency rate displacement ϑϑ ττ 1/  on Lx /1  for 

shear wave of rectangular impulse. 

Consider a propagation of shear wave which has 
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triangular profile. In this case we can calculate analogous 
to rectangular impulse. The results of these calculations are 
presented schematically on Fig. 5 

x1 /L
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1

ττ  / τ1τ

10 x22 / L
 

Figure 5.  Dependency rate displacement ττ ττ 1/  on Lx /1  for 

shear wave of triangular impulse 

The schematically results of propagation of shear wave 
which has triangular profile 

6. Oblique Wave Incidence on 
Boundary of Layer 

Consider the oblique wave incidence on the boundary 

101 xx =  from the half space 101 xx < . In this case the 
rays will be curve lines which satisfy to the equations [17]. 

,τ=
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ds
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 n
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d

=
ψ

,  (63) 

where τ  is a tangential vector to ray trajectory, n  is a 
refraction coefficient, s  is a length along a ray.  

For the systems of differential equations Eq. 61 we set 
boundary conditions on initial surface 

,0xx =  ,0xx  ==τ  0ψψ =  for  0SS =  

( )101 xx = .     (64) 

If ray trajectory is found so surface (eiconal) ψ  is 
calculated along a ray accordingly do formula 
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dsxψ  [7, 17, 18]. Ray 

trajectories are orthogonal to surface ( ) constx =1ψ . 
In the formulas Eqs. 52, 53 a change of dS  along ray 

trajectories is found from Eq. 63. This dependence can’t be 
found in analytical form for general case 3-D arbitrary 
function ( ) 3,2,1, =ixn i . 

Consider the Eq. 63 in plane 21Oxx   
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The equation for ray trajectory has the form [17] 
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Set L  be 500 m then we have 
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where ( ) ),(/, 21021 xxCCxxn S=  is a refraction 
coefficient. 

The behavior of rays for different angles between an axis 

1x  and rays is depicted on Fig. 6. How it follows from Eqs. 

66, 67 0/ 1 >dxdn , then ray trajectories which have the 

angle 
20
πθ <  become bent and drew near to the vertical. 

Therefore the wave front, which incidences on the free 
surface Lx +10 , is parallel to plane Lxx += 101  and a 
refraction wave is plane, too. 
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Figure 6.  The trajectories of wave rays in stratified layer in vicinity of 
free surface of half-space 

7. The Reflection Wave which 
Propagates in the Direction –x1 from 
the Free Surface x1=x10+L 

In this case solutions of the wave equations have the 
form of ray series 
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The equations of a transfer we obtain if substitute Eqs. 68, 69 into Eqs. 26, 27. 
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where mark ( )+  designates direct reflection wave and ( )−  designates reverse (scattering) wave, ( )1xT , ( )1xR  are 
coefficients of passage and reflection respectively. 

The solutions of the Eqs. 70, 71 may be written in the form Eqs. 41, 44. We consider a principal part of ray series for 
0=n  
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We set the boundary conditions for the direct wave ( )+  
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The solutions of the Eqs. 72, 74 with a registration Eq. 76 have the forms 
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The refracted wave may be written with the help of the formulas [7, 19] in the form 
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where ( )1xR  is a function which satisfies to Riccatti’s equations [18, 19] 
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Coefficients ( ),1xT ( )1xR  allow taking into account an effect of a decreasing of an energy of direct wave and 
increasing of reflective wave energy. As it is known [18, 19] 
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,122 =+TR      (81) 

thus if we know the solution of an Eq. 80 so it is possible to 
obtain a boundary condition for ,)0(

)(2 −ϑ )0(
)(12 −T  on the wave 

surface ( )( )1xt ψ+  in the formulas Eq. 79. 
The solutions for reflective waves have following 

expressions 
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Therefore, the Eqs. 77, 78, 80, 82, 83 gives us the 
solution of the problem about the propagation of reflection 
wave in the hypoplastic layer. 

On Fig. 7 is depicted the dependency of )0(
)(2 +ϑ  and 

)0(
)(2 −ϑ  for ),1(1/1 =Lx  ),2(9,0/1 =Lx  ),3(5,0/1 =Lx  
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Figure 7.  The dependency of 
)0(
)(2 +ϑ  and 

)0(
)(2 −ϑ  for ),1(1/1 =Lx  

),2(9,0/1 =Lx  ),3(5,0/1 =Lx  )4(0/1 =Lx  

On Fig. 8 is depicted the dependency of )0(
)(12 +T , )0(

)(12 −T  
for same values 
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Figure 8.  The dependency of 
)0(

)(12 +T , 
)0(

)(12 −T  for ),1(1/1 =Lx  

),2(9,0/1 =Lx  ),3(5,0/1 =Lx  )4(0/1 =Lx  

8. Conclusions 
Shear waves arises in sources of earthquakes and 

propagate in direction of the earth surface. In the paper is 
described the process of shear wave which is arisen and 
propagates in stratified layer in free surface vicinity. A 
change of wave amplitude depends on wave resistance of 
effective medium which decreases in direction of free 
surface. In this case amplitudes of a displacement and a rate 
displacement increase but an amplitude of shear stress 
decreases. From energy law conversation, in the case a 
disturbance in the form of impulse function we obtain, that 
an impulse high increases for displacements and 
displacement rates but a width decreases. It is on contrary 
for a stress disturbance. An increasing of displacement and 
displacement rate is analogous to tsunami effect in case 
when a wave goes to a bank, however, a bend of a wave 
comb is absent. A wave, reflected from a free surface, 
propagates in the direction – 1x  and is summed from a 
direct and a reflective wave. From the energy conservation 
law, it follows that an amplitude of a direct wave decreases 
and an amplitude of a reflective wave accumulates and 
increases in the direction of a free surface. A combined 
application of effective medium method and of ray method 
allows solving the problems of wave propagation in a 
stratified medium. A model of a hypoplastic medium is 
applied in the capacity of an effective medium. This 
approach is correct if thickness il  of each layer is more 

less then L  ( )nilli ,...,2,1, =< . 
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A List of Symbols 
),( tхϑ  – velocity 

K – kinetic energy 
U – internal energy 

),( tхu  – specific internal energy of unit mass 
W – power of generalized mass forces F 
F – mass forces  
Q – heat power  

ijt  – stress tensor 
V – volume of current pipe 
S – surface of current pipe 
t – time 
n  – unit normal vector  
P  – Umov’s – Poyinting’s vector 
L – thickness of layer 

il  – thickness of i-layer  
f – density of mass force vector 
T – tensor of effective stresses 
Dij – tensor of rate 

ijω  – spin tensor 
e  – pore quantity 

SС  – velocity of shear-wave 

)( 1xn  – refraction coefficient 

)( 1xR  – coefficient of reflection 

)( 1xT  – coefficient of transfer 
τ  – unit tangential vector 
ρ  – coefficient of reflection 
ψ  – eiconal 
θ  – angle 
T  – material derivative time 

ix  – Cartesian coordinate 


T  – Jaunman’s derivative time 
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