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Abstract A theoretical study of seismic waves
propagation in a soil layer with a free surface has a great
importance for a prediction in engineering decisions. Wave
packets are radiated from an earthquake source and transfer
energy. A transformation and a selection of wave packets
occur in a process of wave propagating that why waves
which arrive in a layer have a length considerably greater
than a variation scale of heterogeneity in a medium in a
layer near free surface. In the case, when the properties of
different layers affect a relatively small degree on a
behavior of the waves, an approximation of effective
medium gives a fairly good solution. A model of a
hypoplastic medium is used for a describing of some
effects, which are observed in the time of seismic wave
propagation. The model of hypoplastic medium allows
describing many effects which are observed in granular
soils. We consider a successive application of effective
medium and ray methods in order to receive of
approximate analytical solutions wishing to describe shear
wave propagation in stratified layer, which lies on a
half-space.

Keywords Wave Propagation, Hypoplastic Medium,
Ray Method, Stratified Layer, Hypoplastic Model

1. Introduction

The model of elastic stratified medium widely is applied
in seismology geotechnique [1-4]. In the case, when a
medium constitutes from discrete layers, then it is
necessary to solve the boundary problem for each layer. It
is enough a laborious investigation [5]. The dynamic
equations for inhomogeneous media are the differential
equations with variable coefficients. As it is known for
solving of these equations there are no general analytical
methods. The most famous methods which are applied for

solving of differential dynamical equations for
inhomogeneous media are a ray method [6] and method of
effective medium [7]. Some time ago a hypoplastic model
was applied for an investigation of seismic wave
propagation in a soil [8, 9]. The model of hypoplastic
medium allows describing many effects which are
observed in granular soils. We consider a successive
application of effective medium and ray methods in order
to receive of approximate analytical solutions for
description of shear wave propagation in stratified layer,
which lies on a half - space.

As it is known a real soil is inhomogeneous, is usually
stratified in a depth. We take the model of effective
medium which has the same macroscopic properties as real
inhomogeneous medium. The effective model can be
received on a basic of experimental results in the form of
phenomenological theory or on a basic of theoretical
accounts. We take as effective model a hypoplastic
medium [8, 9], which describes a medium with initial
stresses increased in depth linearly. It is correct if a
thickness of each layer is comparatively less than a
thickness of a great layer.

For a solving of constitutive phenomenological
equations, we apply a ray method. An application of this
method is correct if a wave length (or a width of a wave
packet) is less than a variation scale of effective properties.
It is mean that macroscopic properties change
monotonically in a depth.

2. Formulation of Problem

The layer of stratified granule medium lies on the
surface x, > x,, (Fig. 1). A thickness of the layer is L.

At t =0 the plane x, =x,, (the surface.S) the wave
begins to move with the velocity 9 = 3(x,,,t) in the

directions x,. Then there is the plane shear wave which
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propagates in the direction x,. At first we consider a A propagation of wave packeF in continuum is described
propagation of energy in any layer. of the first law of thermodynamic [10]
N K+U=0+W, (1)
X1
— 1¢= = . . .
where g — —IS-SpdV is a kinetic energy, ;; _ IupdV
2 Vv vV
7 is an internal energy, u(x,t) is a specific internal energy
SR of unit mass, . =If-§pdV+Ilr{Z-;}:lS is a
V S
X2 EXHZI power of generalized mass forces /), and surface forces
Jxi=xs ¢, O is heat power.

Figure 1. The stratified layer L which lies on half-space X < X,

For constant density and isothermical processes
d

E(K+U):£f-gpdV+.£tr{Z-§}iS:IJ;EIQipdV+:[tij12nde, @)

where £, is stress tensor.
Let V' be a volume of current pipe, S is a surface of current pipe (Fig. 2) then we obtain
d

—(K+U)= laamm !tijginde—g[tU.Sinde, S=5+5,. 3)

Figure 2. The ray pipe, which is formed by rays
Used a theorem about an average to the integrals in Eq. 1, we obtain [11]

d — _
Z(K+U)=F-dr+(tl.j,9i),jcit—t,.jvjégalt,

where first member F - d7 in right part is a work density of mass forces, second member (2,8, dt is a work

density of surface forces, third member — tiiV /.19l.dt is density of internal surface forces.

We have used the Eq. 3 in pure mechanical formulation (without a registration of a mechanic energy transformation to
thermal energy and either kinds of energy).
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The Umov’s — Poyinting’s vector P (a density of flow
energy) describes a direction of energy transmission in a
medium.

Lines of energy flow are found from the equation [12]

Lj=12 4

dr - P _
dr 7P P=19,
ds ‘

where 7(x,y,z) isradius vector of a point on an energy
flow line, § is a distance along a flow line, 7 is unit

tangential of the vector to a flow line, Z;; is stress tensor,

i

& is a velocity vector.

A variation of the vector 7 along a flow line is
described of the formula
dr -
—=kn, k=1/R, )
ds
where # is normal vector, k is curvature of a flow line,
R is curvature radius of a flow line.
A flow line curvature depends on medium parameters.
We must set boundary conditions for each layer.

3. Shear Wave Propagation in
Stratified Granular Layer with
Effective Hypoplastic Properties

Let a layer of a thickness L be on a half-space
X, £ Xx,,- The layer L constitutive from some layers of
thicknesses /(i =1,2,...,n), it being know that / << L,
(i=1,2,...,n) . For example, it may be an interchange of
layers of sand and clay (Fig. 1).

Let a shear wave (SH) be to incidences on a plane
boundary x, = x,, and is propagated from the half-space

X, < X, - If we want to solve the problem exactly we must

set boundary conditions (or connected conditions) and
describe wave propagation for each layer. There are very
unwieldy expressions especially for multiple scattered
waves.

A method of effective medium allows obtaining a
solution of this problem [7]. Applied an averaging method
(method of homogenization or energy continuation) we
obtain a phenomenological model of inhomogeneous
medium [7].

Suppose that macroscopic (effective) conditions of layer
medium are described of the equations of a hypoplastic
medium [8, 9].

In general case the equations of wave propagation in
hypoplastic medium have the form [6, 7]

MW4ﬁf:%?, ©)

where f is a mass force vector, P93 is a vector of

_ ple+ps

. . n . *
quantity of motion, ¢ is a rate vector, p = 1
+e

is effective (average) density, p, and p  are densities

of liquid and hard fraction in a soil respectively, 7 is a
tensor of effective (total) stresses in an inhomogeneous
medium, e is a pore quantity.

The kinetic equations we write in the form of
constitutive equations of a hypo plasticity [8, 9]

T=H(T,D,e), (7
where T is Jaunman’s derivative time.
70"=T—Ta)—a)T, ®)

in (8) T is material derivative time, D and @ are a
tensor of rate and a spin tensor respectively.

09, 09,
p L[ 09, 9% 1, _1[3% 99 |
b2\ ax, ox b 2(0x,  Ox

A density p* satisfies the equation of continuity

s

d . * 1
i+d1v(p 9)= 0, (10)
dt
and pore quantity e satisfies the equation
e=(+e)rD. (11)
We represent the each field value 7}(X,?), 9.(X;,1),
u(x,t) , p(x,t) , e(x,t) which describes a

dynamical state in hypoplastic medium in the form of the
sum

° le
[
|
+
©
g
[
g
_|_
S

where T, 9, u , P ., ¢ describe initial state and

T, 93,1, p, e describe disturbances.

The initial stresses T (x,) satisfies to the equations
of equilibrium

DivT’ —gradl‘_io +p7=0, (12)
then the equations for disturbances have the form
. dp4
DivT —grad P =L, (13)
dt
Here and in the future the sign ~ we do not write.
Let Eq. (7) be the form
T=L{T,e)D+N(T,e)| D] 14)



12 Simulation of Tsunami Effect by Seismic Wave Propagation in Hypoplastic Medium at Vicinity of Free Boundary

The expression (14) is written in nonindex form (directly designation). In the index form the members of equation (14)
have form

M[F%‘lké‘ﬂ + azfyfk;], L =M[f[j +f;]’

L, =-= & (15)

ijkl ﬂ"(Tz) tV(Tz)
T g
T, =——, T, :];'_lgi"a:\/g?’.sﬂ’ (16)
A7 A R 8 sing,

1 2—tan’ ¢

F=_|—tan> ¢ + 8 (17)
\/8 d 2+\/_tan§cost9 2\/_

c0s30 =—/6 tr(* s a—(i],fa=(&]ﬂ, (18)
e e ) L

(1 Y\ B
.fb:_s( +e,.j[ef,] (—tr J {34_612_@[61@—%0)} ’ (19)
n{ e Ne. h, e.—e,

e e. e —trT !
i _c :_“:exp - » €jo > €0 > €0 (20)
e, h

s

where e, is the minimal possible void ratio, e, is the critical void ratio, e, is void ratio in the least state, L, B, n, h are

material parameters, ¢, is the friction angle in critical state. For example, in Table 1 the constitutive hypoplastic
parameters of Hochstetten sand are given [8, 9].

Table 1. Hypoplastic parameters of Hochstetten sand [8, 9]

0l | A tvral | eqe | e | e | L [ B]

33 1000 095 | 055 | 1,05 | 025 | 1,5 | 0,25

The equation for disturbances follows from Eq. 9 for case when f; is not enough

T=L(T ,e)D+N(T ,e)|| D] 1)

Therefore the Egs. 5, 6, 8, 10 describe a disturbance propagation in hypoplastic medium.

4. Shear Wave Propagation in Effective Hypoplastic Medium

Set initial and boundary conditions on plane x, = x, in the form

G (x;, t)| =0 =% (x,0), 3 (x,, X=xg ) (x,0,1), (22)
T, (x1at)| im0 = 1,(x,0), T, (x, ey = 2 (X050, (23)
The motion equation Eq. 8 in this case has the form
or, B _,
ox, ox,
24
o ,09

ox, ox,
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The coefficients K, we write analogous [6, 7] in the form

Suppose that for an initial state it has place the condition le (x;) =0 we obtain:

Oy g 10%| _o Ol g 0%
ox, axl ot ox,
(25)
oy _y[08]_o Ou_g[08]_,
ot Ox, ot ox,
Combined Eq. 24, Eq. 25, Eq. 21 we obtain the equations for wave disturbance propagation in the layer with effective
properties
B 09) o 09
—| plx ——| K,(x;)—= =0, 26
az(p(l)at] 6x1( 3(1)ale 20
2
o= 5% )-o -
K (x) o o\ p(x,) ox,
where
K, =T, +hT.T, K, =2h(T; - 1/6)
K, 21/3[T1°1_T22]+h1/2+h2(f1;)23 K, :\/EthI; 7 = Tl_‘; (28)
° ~o ~o ~c 12 — >
K 27;2+thszza K6:\/§h3(T22_1/6)> r\Z;
= W5, K, =~2m(T;, - 1/6)

5. Solving of Equations of Shear Wave Propagation in Layer

The differential equations Eq. 26, Eq. 27 have variable coefficients. There are no general analytical methods for a
solving of similar equations. The ray method is the most effective among different asymptotic methods for solving of
differential equations with variable coefficients [6].

For nonstationary waves an application of this method is correct, if a wave length A is much less than a variable of a
scale of effective layer parameters. It has place if an inhomogeneity of a layer changes in a depth monotonic.

It is known that usually a stiffness of a layer changes local nonmonotonic in a depth, but effective stiffness is monotonic
function of spatial coordinate in a depth.

Let the coefficients K (x,), o(x,) inthe equations Eq. 26, Eq. 27 be are effective parameters of medium and a scale

of variable K, p is more greater than a wave length. An effective approximation gives us principal estimation of

wave field values caused of integral (average) conditions of real medium.
Write the solution of the equations Eq. 26, Eq. 27 in the form

9, (x,,7) 219(’” x)f, (£ —w(x,)) (29)
T, (x,.t) ZTIZ’” x)f(E-w(x)) (30)

= f,1(8), 31

where l//(xl) is eiconal, & (x,),T;Y” (x,) are unknown quantities.



14 Simulation of Tsunami Effect by Seismic Wave Propagation in Hypoplastic Medium at Vicinity of Free Boundary

If f (t — l//(x1 )) = M then ray series Eq. 29, Eq. 30 have form

n!
‘92(n)(x1 b)) = i l92(”)(x1 )m ) (32)
=0 n:
Tl(zn)(xl )= iTl(zn)(xl )m (33)
n=0 n.
If f, isHeaviside function [ (7) then f has form
P LG Ty (34)

n!
Substituted Eq. 32, Eq. 33 into Eq. 26, Eq. 27 we obtain

i{[(w')z K- pl s, —[2&%95"“ s (K;w')gé"ﬂf,,_l +[K39§">" +K39;">'}z} 0. o9)

n=o

o0

r\2 n n ' 1ot n n ! n ,
Z{[('// ) K, _p]Tl(z fiez _|:2K3l//'Tl(2 '+ (K3‘// )Tl(z )}fnﬁ' [K3Tl(2 "+ KT :|fn} =0. (36)
For n<0 itmustbe 3" =0, T,5” =0 because the coefficientat f; is equal 0.

From Eq. 35, Eq. 36 it follows

(P K, = pJor 2K '8 — (K" + Ky ) + K90 + KL =0, (7)
r\2 n+ 1 (n " ' n n(n— 1 (n— '
[(l// ) Ky-p 1(2 Y _2K3l//le( ) _(Ksl// + Ky )Tl(z ) +K3T12( Y +K3T1(2 =0 (38)
For n =—1 we obtain 192(") =0, Tl(z”) =0 but 192(0) #0, Tl(zo) # 0 and therefore from Eq. 37, Eq. 38 it follows
' 2 p(xl) -2
(l// (xl)) = =Cy (xl)’ 39)
K3(x1)

where CEZ (xl) is a velocity of shear wave.

The solution of Eq. 39 is written in the form

todx,
() =y ()t |7~ (40)
o Cs (xl )
In the formula Eq. 40 we take the sign “+” for waves which propagate in the direction + X, and the sign “~” for waves
in direction — X, .
Substituted Eq. 40 into Eq. 37, Eq. 38 we obtain the equations of transfer for 92(”) (x,), ﬂ(zn) (x,) . The equations Eq.
37, Eq. 38 with a registration Eq. 40 are solved in general form

4 1/4
n n K (X ) T n—1 p(T)K (T)
9 )(x):&z( )(x )[P(Xlo) 3\Mo } + [ 8¢ )(7){—3} dr, 41)
? 1 ’ * p(xl)K3(x1) ;!-U ’ p(xl)KS(xl)
+1 d '
o= L kg, o
2 2(pK3)1/2 dxl 3V2 (42)
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V4 1/4
(v — P(x10) K5 (x;0) F o o PODK (X))
Ty (x) =T, (m){ p(xlm(xl)} + [ R (T)[—p(T)KAT)} dr. (43)

X10

1/2 n— ’
pon o PK)7 d T | (#4)
2 2 dx,| p

In formulas Eq. 41, Eq. 43 the members at n =0 are principal because they describe main part of wave energy.
Supposed n =—1,0 in the equations Eq. 37, Eq. 38 we obtain the equations Eq. 39, Eq. 40 and the equations of transfer

+ 2K + (K" + Ky )& =0; (45)
2Ky T +(Ky"+ Ky )T = 0. (46)

Multiplied Eq. 45 on V* and Eq.46 on ;5" we obtain

K/ (907 + (k)9 =0

K (1) + (K " =0

or transformed we obtain the law of conversation of energy along ray pipes
U
(K3w'l9§°)z) =0, P =Ky'3"; @)

(k9 ) =0, RO =Ky (48)

Chose a ray pipe in the form of a cylinder with area of a base dS, and with an altitude L Fig. 3.

Figure 3. The ray pipe in the layer L, which is perpendicularity to free surface of half-space

The expressions 47, 48 in 3-D case are written in the form

— — 2 —
vV.B" =0, B :‘”50)‘ k,, (49)

— — 2 —
V.-P" =0, B = ‘Tl(zm‘ k., (50)
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whete , = grady, . , = grady,. B and B
are the vectors of flow density of energy.

Integrated Eq. 49, Eq. 50 on a volume of ray pipe and
applied Gauss theorem we obtain

§B mds =0,

N

— (5D
B -mds = 0,
where § is closed surface of ray pipe, n is normal

vectorto S [17]
From Eq. 51 follow the conditions

)dS

PO(L)=P"(0)=-=" 52

O()=RT0E e
ds,

BE(L)=RY0) 4™ (53)

where dS is the area of a base of ray pipe at x, = X,

and dSL is an area of upper base of ray pipe at
X, =x,+L.
As dS 0= ds ; so obtain the law conversation of low
density of energy
P(L)=R"0). B (L)=RY0) 9
The solutions of the Egs. 45, 46 have the form
K5 (x0) p(x )
9(0) (xl) 9(0) (xlo)\/ 10 10
K (x)p(x)
(55)
IO (x,) = TV (x, )a| S CP(n)
1 Xio .
K5 (x,0)p(x,9)
Let initial impulse be an impulse function f;(¢) in the
form
0, <0
fiy=J,(t,7)=41, 0<t<r, (56)
0, <t

where the function J, (t ,2') is expressed with the help-of

Heaviside function
Jo(tsf): Ho(t)_Ho( - T)'
The boundary conditions by x, = x,, have the form
F (x10,0) = 9" (3,4, (t’ T)
T3 (x5 1) = T, (3,0 J, (t’ T)

(7)

(58)

The wave which comes in the point X, is described
with a registration Eq. 55 in the formulas

: o [Kolig)ptay) e
g<> L 3<> 0 M] S it B
SRR AP RC Gkl rovey

K3(x10)p(x1)J Z—T—]l dx,
C

TV (x,6) =T (x,,)4
ST TV K Gag(e) ()

X0

The conditions Eq. 54 allow to obtain a variation of
wave profile. With a registration Eq. 58, Eq. 59 we have

A K(xo)P(xo) _Xl dx, (0)
W)= oo T Ve |
—4M _ _)ﬁﬂ )

G o Jocs(xo Jor T

(60)

Integrated on ¢ the left part of Eq. 60 from O up to
T(xl) we obtain

K,
K (x1o)p(x10)
K
Z'T = TIT M . (62)
K5 (x)p(x)
From Eq. 60, Eq. 62 it follows that if
4 M <] then a wave profile takes place a

K (x,0)p(x,9)

compression. Therefore, the rate displacement wave has
the compression and the shear stress wave has the
decompression (Fig. 4).

A m
TV/T[V
1
xi/L
* L S
0 1 xi2/L xi3/L X1 Xis Xie Xi7
L L L L

Figure 4. Dependency rate displacement 7 g /2'19 on X, /L for

shear wave of rectangular impulse.

Consider a propagation of shear wave which has
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triangular profile. In this case we can calculate analogous
to rectangular impulse. The results of these calculations are
presented schematically on Fig. 5

T / T

xZ/L

X12/L X2/L

of I

Figure 5. Dependency rate displacement 7' /T 1z on X /L for

shear wave of triangular impulse

The schematically results of propagation of shear wave
which has triangular profile

6. Oblique Wave Incidence on
Boundary of Layer

Consider the oblique wave incidence on the boundary
X, = Xx,, from the half space x, <Xx,,. In this case the
rays will be curve lines which satisfy to the equations [17].

dx d(n7) B

—=7, ———>=gra

ds ds
where 7 is a tangential vector to ray trajectory, #z is a
refraction coefficient, s is a length along a ray.

For the systems of differential equations Eq. 61 we set
boundary conditions on initial surface

dn, v =n, (63)
ds

T=Xx=X,, w=y, for S=8§,
(x1 :xlo). (64)

If ray trajectory is found so surface (eiconal) i/ is

X=X,

calculated along a ray accordingly do formula
Moy M

‘//(fl):_[ — :_‘.n(?_fl)ds [7, 17, 18]. Ray
Moc(xl) M,

trajectories are orthogonal to surface i/ ()_Cl ) =const .

In the formulas Egs. 52, 53 a change of dS along ray
trajectories is found from Eq. 63. This dependence can’t be
found in analytical form for general case 3-D arbitrary

function n(x[ ),i =1,2,3.

Consider the Eq. 63 in plane x Ox,
d(nsin@)  on

=—=0. (65)
ds ox,
The equation for ray trajectory has the form [17]
dx sin 4
2 tg@ -0 (66)
dx, \n® —sin’ 6,
Set L be 500 mthen we have
) 500
= | (67)
500 —x,

where n(xl , X, ) =C,/C,(x,x,) is a refraction
coefficient.
The behavior of rays for different angles between an axis

x, and rays is depicted on Fig. 6. How it follows from Egs.
66, 67 dn/dx, >0, then ray trajectories which have the

T
angle 6, < E become bent and drew near to the vertical.

Therefore the wave front, which incidences on the free
surface X,, + L, is parallel to plane x; = x;,+ L and a

refraction wave is plane, too.

X1 A
Xio+L
N T T 1
l | |
I3 Iz ']
f 1 t
| / !
L ] I
/ / /
/ / /
7 7 7
x / / /
‘Z O / -
x10=0
O1g
020
030

Figure 6. The trajectories of wave rays in stratified layer in vicinity of
free surface of half-space

7. The Reflection Wave which
Propagates in the Direction —x; from
the Free Surface x,=x,,+L

In this case solutions of the wave equations have the
form of ray series



18 Simulation of Tsunami Effect by Seismic Wave Propagation in Hypoplastic Medium at Vicinity of Free Boundary

o0 o0

4, (xl 5 t) = T(xl )Z gz(?l)fn(ﬂ (t + W)"' R(xl )Z ‘92(?7))]2(_) (t - ‘//)9

n=0 n=0

1) =TI ) R DT 12w
p n=
The equations of a transfer we obtain if substitute Eqs. 68, 69 into Egs. 26, 27.
2K 0, + (K )982, = Ko + KL
2K 97, + () 950, = K9 + K3y
2K3‘//T1(z'z)+) + (K3W, T1(2’2r) = K3Tl(2’zj))” + K3"92(?+7)1)'
2T + (K TS = KT + Ky

12(-) 2(-)

(68)

(69)

(70)

(71)

where mark (+) designates direct reflection wave and (—) designates reverse (scattering) wave, 1’ (xl ), R(xl) are

coefficients of passage and reflection respectively.

The solutions of the Egs. 70, 71 may be written in the form Eqgs. 41, 44. We consider a principal part of ray series for

n=0
2K3'//'V§(()i) +(K3W"+K3'W')V§(()i) =Y

2K 80, + Ky + Ky )9

2(-) b =0

’
0 0
2K3WT1(2()+) + (K3‘//” + K;'//’)Tl(z(ir) =0;
!
(0) o) _
2K3l//'T12(7) + (Ksl//” + K;l//’)le(a =0.
We set the boundary conditions for the direct wave (+)
(0) —_ 4,0 (0) _ 7(0)
V2(+)(x10 + L) =V, (xlo + L)a leu)(xlo + L) =T, (xlo + L)-

The solutions of the Eqgs. 72, 74 with a registration Eq. 76 have the forms

9 ()= 99 (xyy + L aC)P®)
K3 (xlo + L)p(xl() + L)

T1(2(2)+) (xl ) = Tl(z()) (xlo + L)“\/K3 (0 *+ L) + L)
Ki(x)p(x))

The refracted wave may be written with the help of the formulas [7, 19] in the form
'92(?2) (xl ) = R(xl )‘92(?1) (xl ),
Tl(z(zl) (xl ) = R(xl )T12(+) (xl )n

where R(xl) is a function which satisfies to Riccatti’s equations [18, 19]

R- %(ew SR ), Q)= G (x)

(72)

(73)

(74)

(75)

(76)

(77)

(78)

(79)

(80)

Coefficients T’ ()71 ), R(Yl) allow taking into account an effect of a decreasing of an energy of direct wave and

increasing of reflective wave energy. As it is known [18, 19]
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R +T° =1, 81)
thus if we know the solution of an Eq. 80 so it is possible to
obtain a boundary condition for gz(?j) , T O 5n the wave

12(-)
surface (t +y (x1 )) in the formulas Eq. 79.

The solutions for reflective waves have following
expressions

Ki(x)p(x)
'9(0) — R l9(0) L 3\M 1
2(7)(X1) ()% (xm " )1/K3(x10 +L)p(x,y+L)
(82)
K +L +L
19 ()= ROEY (5, + L)4\/ i+ Dty + £
3\ 1
(83)

Therefore, the Eqs. 77, 78, 80, 82, 83 gives us the
solution of the problem about the propagation of reflection

wave in the hypoplastic layer.

On Fig. 7 is depicted the dependency of 192(?3)

HY for x/L=1(1), x/L=09(2), x/L=0503),

x,/L=0(4).

and

l)z(fl)(XI) /1)2(0'(X10+L)
2 T

0.5 4 3 >

_‘ xi/L
HT 05 ”0.9 1 ]

Figure 7. The dependency of 192((03) and 192((03) for x, /L =1(1),

X, /L=09(2), x,/L=05@3), x,/L=0(4)

7

On Fig. 8 is depicted the dependency of ]-;(2(2-) s 1

for same values
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Figure 8. The dependency of T 1

12(+) ° Tl(z(z)—) for x, /L =1(1),
x/L=09(2), x,/L=05(3), x /L=0(4)

8. Conclusions

Shear waves arises in sources of earthquakes and
propagate in direction of the earth surface. In the paper is
described the process of shear wave which is arisen and
propagates in stratified layer in free surface vicinity. A
change of wave amplitude depends on wave resistance of
effective medium which decreases in direction of free
surface. In this case amplitudes of a displacement and a rate
displacement increase but an amplitude of shear stress
decreases. From energy law conversation, in the case a
disturbance in the form of impulse function we obtain, that
an impulse high increases for displacements and
displacement rates but a width decreases. It is on contrary
for a stress disturbance. An increasing of displacement and
displacement rate is analogous to tsunami effect in case
when a wave goes to a bank, however, a bend of a wave
comb is absent. A wave, reflected from a free surface,

propagates in the direction — X, and is summed from a
direct and a reflective wave. From the energy conservation
law, it follows that an amplitude of a direct wave decreases
and an amplitude of a reflective wave accumulates and
increases in the direction of a free surface. A combined
application of effective medium method and of ray method
allows solving the problems of wave propagation in a
stratified medium. A model of a hypoplastic medium is
applied in the capacity of an effective medium. This

approach is correct if thickness / of each layer is more

less then L (ll. <li= 1,2,...,n).
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A List of Symbols

H(x,t) — velocity

K — kinetic energy

U — internal energy

u(x,t) - specific internal energy of unit mass
W — power of generalized mass forces F

F — mass forces

O — heat power

tij — stress tensor

V' — volume of current pipe
S — surface of current pipe

¢ —time

7 — unit normal vector

P —Umov’s — Poyinting’s vector
L — thickness of layer

[, — thickness of i-layer

f— density of mass force vector
T — tensor of effective stresses
D;; — tensor of rate

w;

e — pore quantity

— spin tensor

C, — velocity of shear-wave
n(x,) — refraction coefficient
R(x,) — coefficient of reflection

T'(x,) — coefficient of transfer

T —unit tangential vector
p — coefficient of reflection

y —eiconal
0 —angle
T — material derivative time

X, - Cartesian coordinate

o

T — Jaunman’s derivative time
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