Replenishment Policy for Items Having a Fixed Shelf Life under Permissible Delay and Variable Lead Time

Sarbjit Singh

Faculty of Operations Management & Quantitative Techniques, Institute of Management Technology, India

Copyright © 2015 by authors, all rights reserved. Authors agree that this article remains permanently open access under the terms of the Creative Commons Attribution License 4.0 International License

Abstract All organizations whether manufacturing or service have to keep inventory for smooth running of their business processes. This study is devoted to the items like medicines, cosmetics which are having a fixed shelf life, i.e. they will be of no use after some prescribed time. This model also considers the permissible delay which means that the buyer can pay for goods after some fixed time and has to pay interest after that fixed time. The demand considered here is fixed constant demand. The lead time varies as per the availability of the product and follows normal distribution.

Keywords Inventory Model, Fixed Shelf Life, Cycle Period, Variable Lead Time

1. Introduction

One of the most developed fields of operations management is inventory management. Inventory has been defined as idle resources that possess economic value by Monks [1]. To meet demand on time, companies often keep on hand stock that is awaiting sale. The purpose of inventory management is minimizing the cost associated with maintaining inventory and meeting customer demand. The two basic questions of inventory management are (1) when should an order be placed for a product? (2) How large should each order be?

The economic order quantity model was first developed by Ford Harris [2 &3] but R. H. Wilson [4] applied it extensively that is why this is also known as Harris and Wilson model. There is mention of economic order quantity as minimal quantity, cost in book purchasing and storing by Ralph Currier Davis [5].The objective is to determine economic order quantity, Q, which minimizes the total cost of an inventory system when the demand occurs at a constant rate. Hadley and Whitin [6] has analyzed economic order quantity model and studied its applications in practical problems David Piasceki [7]studied how to optimize cost using EOQ and also deals with the conflict between JIT and EOQ.

2. Notation and Assumptions

The following notations and assumptions are used throughout this paper

- D_T amount of material become during a cycle time, T
- θ deterioration rate, a fraction of the on-hand inventory
- c the unit cost per item (dollars/unit)
- s unit selling price ($s>c$)
- A the ordering cost of inventory (dollars/order)
- D the demand rate (units per unit time)
- T cycle time
- C_H the total cost of holding inventory per cycle
- C_D total obsolete cost per cycle
- M the retailer’s trade credit period offered by supplier in years
- I_e interest which can be earned per $ per year
- I_p interest charges per $ in stocks per year by the supplier
- Q the retailer’s order quantity per cycle
Assumptions
1) The items considered in this model are having a fixed shelf life
2) Shortages are allowed and fully backlogged.
3) The demand is constant
4) N cycles have been considered in a year
5) Effect of inflation and time value of money both are considered
6) The lead time is probabilistic and follows normal distribution.
7) The lead time is variable.

3. Mathematical Model and Analysis
Considering the above assumptions with constant demand, the inventory system goes like this: Initially depletion of the inventory occurs due to demand (supply) only i.e., during the period [0, t1]. For this period the inventory at any time t is given by
\[
\frac{dI(t)}{dt} = -(\alpha + \beta I(t)), \quad 0 \leq t \leq t_1
\]
(1)
t1 is the fixed life of items, after the fixed time items become obsolete
Solving equation (1) and taking into consideration condition that at t = T, I(t) = 0. Putting this value in the above equation, we get
\[
I(t) = \frac{\alpha}{\beta}(e^{\beta[T-t]} - 1), \quad 0 \leq t \leq t_1
\]
(2)
The order quantity Q, ordered at time t=0 is
\[
Q = \frac{\alpha}{\beta}(e^{\beta T} - 1)
\]
(3)
The total variable cost will consist of the following
a) The ordering cost of the materials is fixed at A dollar/order
b) There are two cases for holding or carrying cost, either t1 < T, or t1 ≥ T
Case I - t1 < T,
The holding cost is the function of average inventory cost and it is given by
\[
C_H = ic \left[\int_0^{t_1} I(t)dt \right]
\]
The holding cost is the function of average inventory cost and it is given by
\[
C_H = ic \left[\int_0^{t_1} I(t)dt \right]
\]
Which, upon simplification, yields
\[
= \frac{ic \alpha}{\beta} \left(e^{\beta T} - e^{\beta(T-t_1)} \right)
\]
(4)
Case II - t1 ≥ T

The holding cost is the function of average inventory cost and it is given by
\[
C_H = ic \left[\int_0^{T} I(t)dt \right]
\]
Which, upon simplification, yields
\[
= \frac{ic \alpha}{\beta} \left(e^{\beta T} - e^{\beta(T-t_1)} \right)
\]
(5)
c) Obsolescence cost
It occurs only in the case when t1 < T
\[
C_o = c(Q - (I(T)t = t_1))
\]
(6)
d) According to assumption, there are four cases
Case I M < t1 < T or t1 < M < T The permissible delay is less than the shelf life and shelf life is less than the cycle period or shelf life is less than permissible delay and permissible delay is less than cycle period
The interest payable (I_p) per cycle
\[
= \int_M^T c Q dt
\]
(7)
The interest earned (I_e) per cycle is
\[
= \int_0^{t_1} t(\alpha + \beta I(t))dt
\]
(8)
The Total Variable Cost function per cycle is given by
\[
TVC = A + C_H + C_o - I_e + I_p
\]
(9)
The Total Variable Cost per unit time, TC, is simply given by
\[
TC = \frac{TVC}{T}
\]
(10)
Case II. M < T < t1 i.e. the permissible delay time is less than the cycle time and cycle time is less than the shelf life
The interest payable (I_p) per cycle
\[
= \int_M^T c Q dt
\]
The interest earned \((I_e)\) per cycle is given by

\[
I_e = si_o \int_0^T [\alpha + \beta l(t)] dt
\]

Total variable cost function per cycle is given by

\[
TVC = S + C_D + C_H + I_p - I_e
\]

Using values obtained in equation (9) and (10), the total variable cost comes out to be

\[
TVC(T, t_i) = S + c \left[\frac{D}{\theta} \left(e^{\theta (T-t_i)} - 1 \right) + Dt_i - DT \right] + \frac{icD}{\theta^2} \left[\frac{\theta^2 t_i^2}{2} + (1 + \theta t_i) \left(e^{\theta (T-t_i)} - 1 \right) - \theta (T-t_i) \right] + c_i \frac{D}{\theta^2} \left(e^{\theta (T-M)} - 1 - \theta T - \theta M \right) - si_o DT^2
\]

The Total Variable Cost per unit time, \(TC\), is simply given by

\[
TC(T, t_i) = \frac{S}{T} + \frac{c}{T} \left[\frac{D}{\theta} \left(e^{\theta (T-t_i)} - 1 \right) + Dt_i - DT \right] + \frac{icD}{\theta^2} \left[\frac{\theta^2 t_i^2}{2} + (1 + \theta t_i) \left(e^{\theta (T-t_i)} - 1 \right) - \theta (T-t_i) \right] + c_i \frac{D}{\theta^2} \left(e^{\theta (T-M)} - 1 - \theta T - \theta M \right) - si_o DT^2
\]

Using the principle of maxima and minima the appropriate value of cycle time, \(T\) can be obtained to minimize the total cost.

4. Numerical Illustrations

If we consider four cycles in a year, i.e. \(T = \frac{1}{4}\) than optimal order quantity for \(\alpha = 1000\), \(\beta = .5\) is 267 items.

In case the fixed shelf life is two and a half month, then the number obsolete items is 94 and consider per item cost $10 will give the obsolescence cost as $940.

5. Concluding Remarks

In this paper the products having stock dependent demand with fixed shelf life has been considered. In most of the previous studies, it has been considered that deterioration of items starts immediately after procurement, which is inaccurate in the majority of the cases. To remove this limitation, in this study, the proposed model considers the items which does not deteriorate but become obsolete after some fixed time.

The theorems prove the validity of the model, as they show both the total variable cost and the average cost are convex. The proposed model can be extended in several ways. For instance, we may consider various demand patterns like an exponential, linear etc, and also can include allowing shortages, time value of money, trade credit and inflation; all these are worthy of future research.

REFERENCES

