Criteria for the Existence of Common Points of Spectra of Several Operator Pencils

R.M. Dzhabarzadeh

Institute of Mathematics and Mechanics, National Academy of Science of Azerbaijan, Azerbaijan

Copyright © 2015 Horizon Research Publishing All rights reserved.

Abstract In this paper we present two criteria for the existence of common eigen values of several operator pencils having discrete spectrum. One of the given criteria is proved by using analogs of resultant for several operator pencils; proof of the other criterion requires the use of the results of the multiparameter spectral theory. In both cases the number of operator pencils is finite, operator pencils act, generally speaking, in different Hilbert spaces.

Keywords Operator Pencils, Resultant of Two Operator Pencils, Hilbert Space, Common Eigenvalue, Kernel of Operator

1. Introduction

The definition of abstract analogue of resultant of two operator pencils in one parameter is given in [2] and [10] with the help of definitions of tensor product of spaces and tensor product of operators. When the operator pencils have the identical degree concerning parameter concept of resultant has been given in work of Khayniq [9], for operator pencils, generally speaking, with the different orders of parameter, the abstract analog of a resultant is studied by Balinskii [2].

Let be

\[A(\lambda) = A_0 + \lambda A_1 + \lambda^2 A_2 + \ldots + \lambda^n A_n, \]

\[B(\lambda) = B_0 + \lambda B_1 + \lambda^2 B_2 + \ldots + \lambda^m B_m \]

(1)

two operator pencils depending on the same parameters \(\lambda \) and acting, generally speaking, in various Hilbert spaces \(H_1, H_2 \), correspondingly.

\(\text{Res}(A(\lambda), B(\lambda)) \) is the resultant of two operator pencils \(A(\lambda) \) and \(B(\lambda) \). It is presented by the matrices (2) and acts in the space \((H_1 \otimes H_2)^{n+m}\) - direct sum of \(n + m \) copies of tensor product of space \(H_1 \otimes H_2 \).

In a matrix \(\text{Res}(A(\lambda), B(\lambda)) \) the number of rows with operators \(A_i \) is equal to leading degree of parameter \(\lambda \) in pencil \(B(\lambda) \), that is \(m \), the number of rows in matrix \(\text{Res}(A(\lambda), A(\lambda)) \) with operators \(B_i \) coincides with the leading degree of parameter \(\lambda \) in pencil \(A(\lambda) \), that is \(n \).

In [2], [10] operator \(\text{Res}(A(\lambda), B(\lambda)) \) is named by abstract analog of a resultant for operator pencils (1). Value of a resultant \(\text{Res}(A(\lambda), B(\lambda)) \) is equal to its formal decomposition wherein each term of decomposition is tensor product of operators.

Theorem 1. ([2],[10]). Let the following conditions satisfy:

a) Operators \(A_i \) and \(B_j \) are bounded and one of them has bounded inverse.

b) Spectra of operator pencils \(A(\lambda) \) and \(B(\lambda) \) are discrete set.

Then the pencils (1) have a common eigenvalue if and only if \(\text{Ker Res}(A(\lambda), B(\lambda)) \neq \{0\} \).

In the case \(m = n \) in (1) Theorem1 is proved in [10], at arbitrary whole meanings \(m, n \) Theorem1 is proved in [2].

Operator (2) is the generalization of Resultant

\[
\text{Res}(f,g) = \begin{pmatrix}
 a_n & a_{n-1} & \ldots & a_1 & a_0 & 0 & \ldots & \ldots & 0 & 0 \\
 0 & a_n & a_{n-1} & \ldots & a_1 & a_0 & \ldots & \ldots & \ldots & \ldots \\
 \vdots & \vdots & \ddots \\
 \ldots & \ldots \\
 0 & 0 & \ldots \\
 b_m & b_{m-1} & \ldots & b_1 & b_0 & 0 & \ldots & \ldots & 0 & 0 \\
 \ldots & \ldots \\
 0 & b_m & \ldots & b_1 & b_0 & 0 & \ldots & \ldots & 0 & 0 \\
 \ldots & \ldots \\
 0 & 0 & 0 & 0 & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
 b_m & b_{m-1} & \ldots & b_1 & b_0 & 0 & \ldots & \ldots & 0 & 0 \\
 \ldots & \ldots \\
\end{pmatrix}
\]

(3)
constructed for polynomials

\[
f(x) = a_0 x^n + a_{n-1} x^{n-1} + \ldots + a_0, \quad a_n \neq 0; \quad g(x) = b_0 x^m + b_{m-1} x^{m-1} + \ldots + b_0, \quad b_m \neq 0; \quad (4)
\]

At the proof of the second criterion of existence of common eigenvalue of several operator pencils in Hilbert space we essentially use the results of multiparameter spectral theory \([1,3,5,11]\) and also the notion of abstract analog of Cramer’s determinants.

Criterion for the existence of common eigenvalues of several operator pencils in Hilbert space

1. Let now we have \(n \) the operator pencils depending on the same parameter \(\lambda \)

\[
B_i(\lambda) = B_{0,i} + \lambda B_{1,i} + \ldots + \lambda^{k_i} B_{k,i}, \quad i = 1, 2, \ldots, n
\]

(5) \((3.12)\)

when \(B_i(\lambda) \) be the operator pencils acting in Hilbert space \(H_i \), correspondingly. Without loss of generality we suppose \(k_1 \geq k_2 \geq \ldots \geq k_n \).

Definition 1. \([1,3,11]\) \(B_{i,j} \) - the operator induced by operator \(B_{i,j} \), acting from the space \(H_i \) into tensor product space \(H = H_1 \otimes \ldots \otimes H_n \) and is defined the following way: on decomposable tensor \(x = x_1 \otimes \ldots \otimes x_n \):

\(B_{i,j}^+ x = x_1 \otimes \ldots \otimes x_{i-1} \otimes B_{j,i} x_i \otimes x_{i+1} \otimes \ldots \otimes x_n \), on other elements of space \(H = H_1 \otimes \ldots \otimes H_n \) operator \(B_{i,j}^+ \) is defined on linearity and continuity.

Introduce the operators \(R_i \) (\(i = 1, 2, \ldots, n \)) in space \(H^{k_1+k_2} \) (the direct sum of \(k_1 + k_2 \) copies of tensor product \(H = H_1 \otimes \ldots \otimes H_n \) of spaces \(H_1, H_2, \ldots, H_n \)) by means of the operational matrices

\[
R_{i-1} = \begin{pmatrix}
B_{0,i} & B_{1,i} & \ldots & B_{1,i}^- & B_{1,i-1}^- & \ldots & 0 \\
0 & B_{0,i} & B_{1,i} & \ldots & B_{1,i}^- & B_{1,i-1}^- & \ldots & 0 \\
\ldots & \ldots \\
0 & 0 & \ldots & B_{k,i} & B_{k,i}^- & \ldots & B_{1,i}^- & 0 \\
0 & 0 & \ldots & B_{k,i} & B_{k,i}^- & \ldots & B_{1,i}^- & 0 \\
\ldots & \ldots \\
0 & 0 & \ldots & B_{k,i} & B_{k,i}^- & \ldots & B_{1,i}^- & 0 \\
0 & 0 & \ldots & B_{k,i} & B_{k,i}^- & \ldots & B_{1,i}^- & 0 \\
\ldots & \ldots \\
0 & 0 & \ldots & 0 & 0 & \ldots & 0 & 0 \\
0 & 0 & \ldots & 0 & 0 & \ldots & 0 & 0
\end{pmatrix}, \quad i = 2, \ldots, n.
\]

(6)

In the matrix \(R_i \) the number of lines with operators \(B_{i-1}^+ s = 0, 1, \ldots, k_i \) is equal to \(k_i \) and the number of lines with operators \(B_{i-1}^+ s = 0, 1, \ldots, k_i \) is equal to \(k_i \). \(R_{i-1} \) are the operators in the space \(H^{k_1+k_2} \) representing by the matrices in \((6)\) \((3.13)\)

We shall designate \(\sigma_p(B_i(\lambda)) \) the set of eigenvalues of an operator \(B_i(\lambda) \).

Theorem 2. \([4]\) Let the operator \(B_{k,1} \) has inverse.

\[
\bigcap_{\lambda \in \sigma_p(B_i(\lambda)) \neq \{\theta\}} \bigcap_{j=1}^{n-1} Ker R_j \neq \{\theta\}.
\]

Proof of Theorem 2. Necessity. We suppose, that pencils \(B_i(\lambda) \) have a common eigen- value \(\lambda^0 \). For everyone \(i \) there are such elements \(x_i \in H_i \), that \(B_i^+(\lambda^0) x_i \otimes \ldots \otimes x_n = 0, \quad i = 1, 2, \ldots, n \).

It is easy to see, if the element

\[
X = (x_1 \otimes \ldots \otimes x_n, \lambda^0 x_1 \otimes \ldots \otimes x_n, \ldots, (\lambda^{k_1+k_2})^{x_1 \otimes \ldots \otimes x_n})
\]

in the kernel of an operator \(R_i \) for each \(i = 1, 2, \ldots, n-1 \), then \(X \in \bigcap_{1}^{n-1} Ker R_j \).

Sufficiency. Let \(\bigcap_{1}^{n-1} Ker R_j \neq \{\theta\} \) and an element

\[
X = (\tilde{x}_1, \tilde{x}_2, \ldots, \tilde{x}_{k_1+k_2}) \in \bigcap_{1}^{n-1} Ker R_j, \quad \tilde{x}_i \in H_i.\]

Then element \(X \) in the kernels of operators \(R_1, R_2, \ldots, R_{n-1} \), i. e. \(R_i(\tilde{x}_1, \tilde{x}_2, \ldots, \tilde{x}_{k_1+k_2}) = \theta; \quad s = 1, 2, \ldots, n-1 \). Expression

\[
\bigcap_{1}^{n-1} Ker R_j \neq \{\theta\}
\]

means there is such nonzero element

\[
\left(\sum_{j=1}^{n-1} x_j^{(i)} \otimes x_j^{(i)} \otimes \ldots \otimes x_j^{(i)} \right)_{i=1}^{1} = (H_1 \otimes \ldots \otimes H_n)^{1 \times 2} \quad \text{that the equalities satisfy.}
\]

Then an element

\[
\left(\sum_{j=1}^{n-1} x_j^{(i)} \otimes x_j^{(i)} \otimes \ldots \otimes x_j^{(i)} \right)_{i=1}^{1} \quad \text{enters the kernel of}
\]

Resultant of operators \(B_i(\lambda) \) and \(B^{++}(\lambda, \alpha_2, \ldots, \alpha_n) = \alpha_2 B^{++}_2(\lambda) + \alpha_3 B^{++}_3(\lambda) + \ldots + \alpha_n B^{++}_n(\lambda) \).
Let the linear multiparameter system in the form be:

$$B_k(\lambda)x_k = \left(B_{0,k} + \sum_{k=1}^{n} \lambda^k B_{i,k} \right) x_k = 0 \quad k = 1, 2, \ldots, n$$

(8)

when operators $B_{i,k}$ act in the Hilbert space H_i.

Definition 2. [1,2,11] $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_n) \in \mathbb{C}^n$ is an eigenvalue of the system (8) if there are non-zero elements $x_j \in H_i (i = 1, 2, \ldots, n)$ such that equalities in (8) are true, then a decomposable tensor $X = x_1 \otimes x_2 \otimes \cdots \otimes x_n$ is called the eigenvector corresponding to an eigenvalue $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_n) \in \mathbb{C}^n$.

Definition 3 ([5], [6]).

Let $x_{0, \ldots, 0} = x_1 \otimes x_2 \otimes \cdots \otimes x_n$ be an eigenvector of the system (8), corresponding to its eigenvalue $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_n)$; the $x_{m_1, m_2, \ldots, m_n}$ is m_1, m_2, \ldots, m_n - the associated vector (see [5]) to an eigenvector $x_{0, \ldots, 0}$ of the system (8) if there is a set of vectors $(x_{1,2,\ldots,n}) \subset H_1 \otimes \cdots \otimes H_n$, satisfying to conditions

$$B^{\pm}_{i,j}(\lambda)x_{s_1,s_2,\ldots,s_i,s_{i+1},r_1,r_2,\ldots,r_{n-1}} + \cdots + B^{\pm}_{i,j}(\lambda)x_{s_1,s_2,\ldots,s_i,r_{n-1},s_{n-1}} = 0$$

$$x_{s_1,s_2,\ldots,s_i,r_1} = 0, \text{ when } s_i < 0$$

$$0 \leq s_r \leq m_r, r = 1, \ldots, n; \quad i = 1, \ldots, n$$

(9)

Indices s_1, s_2, \ldots, s_n in element
\((x_1, x_2, ..., x_n) \subset H_1 \otimes ... \otimes H_n \) there are various
arrangements from set of integers on \(n \) with \(0 \leq s_r \leq m_r, \)
\(r = 1, 2, ..., n. \)

Definition 4. In [1,3,11] for the system (8) analogue of the
Cramer’s determinants, when the number of equations is
equal to the number of variables, is defined as follows: on
decomposable tensor \(x = x_1 \otimes x_2 \otimes ... \otimes x_n \), operators
\(\Delta_j \) are defined with the help the matrices
\[
\sum \alpha_i \Delta_j x = \bigotimes
\begin{pmatrix}
\alpha_0 & \alpha_1 & \alpha_2 & \ldots & \alpha_n \\
B_{0,1} x_1 & B_{1,1} x_1 & B_{2,1} x_1 & \ldots & B_{n,1} x_1 \\
B_{0,2} x_2 & B_{1,2} x_2 & B_{2,2} x_2 & \ldots & B_{n,2} x_2 \\
B_{0,3} x_3 & B_{1,3} x_3 & B_{2,3} x_3 & \ldots & B_{n,3} x_3 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
B_{0,n} x_n & B_{1,n} x_n & B_{2,n} x_n & \ldots & B_{n,n} x_n
\end{pmatrix}
\] \((10) \)
where \(\alpha_0, \alpha_1, ..., \alpha_n \) are arbitrary complex numbers. The
decomposition of the determinant (10) is its formal
decomposition, when all terms of decomposition are tensor
products of elements. If \(\alpha_k = 1, \alpha_i = 0, i \neq k \), then right
side of (10) is equal to \(\Delta_k x \), where
\(x = x_1 \otimes x_2 \otimes ... \otimes x_n \). On all the other elements of the
space \(H \) operators \(\Delta \) are defined on linearity and continuity.
\(E_s (s = 1, 2, ..., n) \) is the identity operator of space \(H \). Suppose
that for all \(x \in H \), \(x \neq 0 \),
\(\Delta_0 x, x \geq \delta(x, x) > 0 \), \(\delta > 0 \), and all \(B_{i, k} \) are
selfadjoint operators in the space \(H \). Inner product \([.,.]\) is
defined as follows; if \(x = x_1 \otimes x_2 \otimes ... \otimes x_m \) and
\(y = y_1 \otimes y_2 \otimes ... \otimes y_m \) are decomposable tensors, then
\([x, y] = (\Delta_j x, y) \), where \((x, y) \) is the inner product in
the space \(H \). On all the other elements of the space \(H \) the
inner product is defined on linearity and continuity. In space
\(H \) with such metric all operators \(\Gamma_i = \Delta_k^0 \Delta_j \) are
selfadjoint [1,3,11].

We give a new criterion for the existence of common
points of spectra of several operator pencils (5). Let us assume
that each operator pencil in (5) has a discrete spectrum.
Conditions on the operators \(B_{i, k} \) remain the same. Let
highest degree of parameter \(\lambda \) in (5) is \(m \).

In (5) we make the transformations
\[
\lambda = \lambda_1, ..., \lambda^i = \lambda_i, ..., i = 1, 2, ..., m.
\] \((11) \)
then the operator pencils (5) are written in the form
\[
B_i^+(\lambda_1, ..., \lambda_m) \tilde{x}_i = 0 \quad i = 1, ..., k
\] \((12) \)
by the operator \(B_i(\lambda_1, ..., \lambda_m) \), that acts in space \(H_i \).

The equation \(B_i^+(\lambda_1, ..., \lambda_m) \tilde{x}_i = 0 \) \(i = 1, ..., k \) we
consider together with the following equations
\[
(t_2 + \lambda_i t_0 + \lambda_j t_1) x_2 = 0
\]
\[
(\lambda_i t_2 + \lambda_j t_0 + \lambda_k t_1) x_3 = 0
\]
\[
(\lambda_{m-2} t_2 + \lambda_{m-1} t_0 + \lambda_m t_1) x_m = 0
\]
\((13) \)
where the operators \(t_0, t_1, t_2 \) are defined with help of the matrices
\[
t_0 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad t_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad t_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}
\] \((14) \)

In the space \(R^2 \) the equations (13) on its eigenvectors
realize the connections between the parameters
\(\lambda_1, \lambda_2, ..., \lambda_m \) according to the requirements of (5).

We build \(k \) linear multiparameter systems
\[
B_i^+(\lambda_1, ..., \lambda_m) \tilde{x}_i = 0
\]
\[
(t_2 + \lambda_i t_0 + \lambda_j t_1) x_2 = 0
\]
\[
(\lambda_i t_2 + \lambda_j t_0 + \lambda_k t_1) x_3 = 0
\]
\[
(\lambda_{m-2} t_2 + \lambda_{m-1} t_0 + \lambda_m t_1) x_m = 0
\]
\(\tilde{x}_i \in H_1 \otimes ... \otimes H_k, \quad x_j \in R^2, s = 2, ..., m-1; \quad i = 1, ..., k. \) \((15) \)

and introduce the space
\(\tilde{H} = H_1 \otimes ... \otimes H_k \otimes R^2 \otimes ... \otimes R^2 \). In the tensor
product \(\tilde{H} \) factor \(R^2 \) repeats \(m-1 \) time. Construct
the analog determinants of Cramer for the linear
multiparameter system (15) of the formulae
\[
\sum_{i=0}^m \alpha_i \Delta_j = \begin{pmatrix}
\alpha_0 & \alpha_1 & \alpha_2 & \ldots & \alpha_m \\
B_{0,1} & B_{1,1} & B_{2,1} & \ldots & B_{n,1} \\
0 & t_{1,0} & t_{1,2} & \ldots & 0 \\
0 & t_{2,3} & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & \ldots & \ldots
\end{pmatrix}
\] \((16) \)

When \(B_{i, j} = 0 \) if \(j < k_i \). All operators \(B_{i, j}, t_{k, h} \) in
the expression (16) are induced in space
\(\tilde{H} = H_1 \otimes ... \otimes H_k \otimes R^2 \otimes ... \otimes R^2 \) by the
operators $B^{+}_{i,j}$, $t_{x,k}$, correspondingly.

If operators $B_{i,k}$ are selfadjoint in space H_{k} and above accepted conditions are satisfied, then all the eigenvalues of each operator
\[\Gamma_{i,s} = \Delta_{0}^{i} \Delta_{i,s} \quad (s = 1, \ldots, k; \ i = 1, \ldots, m) \]
are real numbers [1,3,11]. Suppose now that $(\lambda_{1}, \ldots, \lambda_{m})$ is an eigenvalue of the system (15). Take two equations of the system, namely the equations
\[(t_{2} + \lambda_{t_{0}} + \lambda_{3} t_{1})x_{2} = 0 \]
\[(\lambda_{i} t_{2} + \lambda_{2} t_{0} + \lambda_{3} t_{1})x_{3} = 0 \] (17)

For eigenvector $x_{i} \otimes \ldots \otimes x_{m}$, $x_{i} \in R^{1}, \ldots, x_{m-i} \in R^{1}, (x_{i} \otimes \ldots \otimes x_{i}) \in H_{1} \otimes \ldots \otimes H_{k}$ of the system (15) we have the following:

If $\lambda_{i} \neq 0$ and $x_{2} = (\alpha_{1}, \beta_{1})$ is eigenvector of the first equation of (16) then
\[\left[\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right] + \lambda_{i} \left[\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right] + \lambda_{3} \left[\begin{array}{c} 0 \\ 1 \\ 0 \end{array} \right] \left(\alpha_{1}, \beta_{1} \right) = 0, \]

or $\lambda_{i} \beta_{1} + \lambda_{3} \alpha_{1} = 0, \beta_{1} = 0; \lambda_{3} \neq \lambda_{2}^{i}$.

Further if $\lambda_{i} \neq 0, \lambda_{j} \neq 0, x_{s+2} = (\alpha_{2}, \beta_{2}) \neq 0$ then the equalities $\lambda_{i} \beta_{2} + \lambda_{3} \alpha_{2} = 0, \lambda_{2} \beta_{2} + \lambda_{3} \alpha_{2} = 0$ and $\lambda_{i} \lambda_{3} = \lambda_{2}^{i}$. Earlier we proved $\lambda_{s} = \lambda_{2}^{s}$, therefore $\lambda_{s} = \lambda_{2}^{s}$.

By analogy for other equations: if $(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m})$ is an eigenvalue of the system (15) then $\lambda_{s} = \lambda_{2}^{s}$, $\lambda_{m} = \lambda_{2}^{m}, \lambda = \lambda_{2}$ are valid.

In the space $\tilde{H} = H_{1} \otimes \ldots \otimes H_{k} \otimes R^{2} \otimes \ldots \otimes R^{2}$ we build operators $\Delta_{0,1}, \ldots, \Delta_{0,k}$ (accord to the definition 4) for each of linear multiparameter system (15). If kernels of operators $\Delta_{0,1}, \ldots, \Delta_{0,k}$ are zero then (see [1],[3],[5]) the parameter λ_{i} in (15) are separated. The formula
\[\Delta_{0}^{i} \lambda_{i} \tilde{x}_{i} = \lambda_{i} \tilde{x}_{i}, \ldots, \Delta_{0}^{i} \lambda_{m} \tilde{x}_{m} = \lambda_{m} \tilde{x}_{m}; \ s = 1, \ldots, k \]
\[\tilde{x} \in \tilde{H} = H_{1} \otimes \ldots \otimes H_{k} \otimes R^{2} \otimes \ldots \otimes R^{2} \]
are true. So on eigenvectors of the system $\lambda_{2} = \lambda_{2}^{2}, \lambda_{3} = \lambda_{2}^{3}, \lambda_{4} = \lambda_{2}^{4}, \ldots, \lambda_{m} = \lambda_{2}^{m}, \lambda = \lambda_{2}$ and
\[\Delta_{0,1} \lambda_{i} \tilde{x}_{i} = \lambda_{i} \tilde{x}_{i}, \ldots, \Delta_{0,1} \lambda_{m} \tilde{x}_{m} = \lambda_{i} \tilde{x}_{m} \]
\[\tilde{x} \equiv \tilde{x} \in H_{1} \otimes \ldots \otimes H_{k} \otimes R^{2} \otimes \ldots \otimes R^{2} \]

\[\tilde{x} \in \tilde{H} = H_{1} \otimes \ldots \otimes H_{k} \otimes R^{2} \otimes \ldots \otimes R^{2} \]
are true. So on eigenvectors of the system $\lambda_{2} = \lambda_{2}^{2}, \lambda_{3} = \lambda_{2}^{3}, \lambda_{4} = \lambda_{2}^{4}, \ldots, \lambda_{m} = \lambda_{2}^{m}, \lambda = \lambda_{2}$ and
\[\Delta_{0,1} \lambda_{i} \tilde{x}_{i} = \lambda_{i} \tilde{x}_{i}, \ldots, \Delta_{0,1} \lambda_{m} \tilde{x}_{m} = \lambda_{i} \tilde{x}_{m} \]

Besides of $\lambda = \lambda_{1}$ then
\[\Delta_{0}^{i} \lambda_{i} \tilde{x}_{i} = \lambda_{i} \tilde{x}_{i}, \quad s = 1,2, \ldots, k; \quad i = 1,2, \ldots, m \] (18)

Theorem 3. Let the spectra of the operator pencils $B_{i}(\lambda)$ contain only eigenvalues, operators Δ_{0}^{i} $(i = 1,2, \ldots, k)$ exist and bounded. Then λ_{i} is a common eigenvalue of all the operators $B_{i}(\lambda)$ in (5) iff
\[\ker(\Delta_{1,1} - \lambda \Delta_{0,1}) \cap \ldots \cap \ker(\Delta_{1,k} - \lambda \Delta_{0,k}) \neq \{0\} \] (19)

Proof of Theorem 3. Suppose that conditions of the Theorem 3 are fulfilled. From [5] it follows: system of eigen and associated vectors of all multiparameter systems (15) and system of eigen and associated vectors of operators
\[\Gamma_{i,s} = \Delta_{0}^{i} \Delta_{i,s} \quad (i = 1,2, \ldots, m) \] (20)

coincide for each the fixed meanings of number i. In virtue of the connections between the components of eigenvalues of the system(15) we have
\[\Delta_{0}^{i,1} \Delta_{i,s} \tilde{x}_{i} = \lambda_{i} \tilde{x}_{i}, \quad \tilde{x}_{i} = \tilde{x}_{i}; \quad i = 1, \ldots, m; \quad s = 1, \ldots, k; \] or
\[\Delta_{0}^{i,1} \Delta_{i,s} \tilde{x}_{i} = \lambda_{i}^{2} \tilde{x}_{i}, \quad i = 1, \ldots, m; \quad s = 1, \ldots, k; \] (21)

Let λ is the first component of eigenvalue of all systems (15). From condition
\[\ker(\Delta_{1,1} - \lambda \Delta_{0,1}) \cap \ldots \cap \ker(\Delta_{1,k} - \lambda \Delta_{0,k}) \neq \{0\} \] it follows that there is the element
\[\tilde{x}_{1} \otimes \tilde{x}_{2} \otimes \ldots \otimes \tilde{x}_{m} = \tilde{x} \in \tilde{H} \quad \tilde{x}_{i} \in H_{1} \otimes \ldots \otimes H_{k} \] being the common eigenvector of all systems (15), corresponding to the common eigenvalue $(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}) = (\lambda, \lambda^{2}, \ldots, \lambda^{m})$.

We use the known formulae of multiparameter spectral theory [1,3,11]
\[B_{i,j}^{+} + B_{i,j}^{+} \Gamma_{1,j} + \ldots + B_{i,j}^{+} \Gamma_{m,i} = 0, \quad i = 1,2, \ldots, k \]
\[(t_{2,2}^{+} + t_{2,2}^{+} \Gamma_{1,j} + \ldots + t_{2,2}^{+} \Gamma_{m,i}) \tilde{x}_{i} = 0 \]
\[t_{2,3}^{+} \Gamma_{1,j} + t_{2,3}^{+} \Gamma_{j,2} + \ldots + t_{2,3}^{+} \Gamma_{3,1} = 0 \]
\[t_{m-1,2}^{+} \Gamma_{1,j} + t_{m-1,2}^{+} \Gamma_{j,2} + \ldots + t_{m-1,2}^{+} \Gamma_{m-1,i} = 0 \]
\[t_{m-1,2}^{+} \Gamma_{1,j} + t_{m-1,2}^{+} \Gamma_{j,2} + \ldots + t_{m-1,2}^{+} \Gamma_{m-1,i} = 0 \]
\[i = 1, \ldots, k. \] Substituting into the first equality in all multiparameter systems (22) values of operators $\Gamma_{s,i}$ from (20),(21) and given $\tilde{x}_{1} = \tilde{x}_{2} = \ldots = \tilde{x}_{m} = \tilde{x}$ we establish that all operator pencils in (5) have a common eigenvalue.

It is true an inverse preposition. Let λ is there a common eigenvalue of the operator pencils (5), consequently, $(\lambda, \lambda^{2}, \ldots, \lambda^{m})$ is an eigenvalue of all systems in (15). So λ is the eigenvalue of (15), then there is eigenvector $\tilde{x}_{1} = \tilde{x}_{2} = \ldots = \tilde{x}_{m} = \tilde{x}$ of all multiparameter system in
Criteria for the Existence of Common Points of Spectra of Several Operator Pencils

From [5] it follows that the system of eigen and associated vectors of multiparameter system (15) and of each equation \((\Delta_{1,1} - \lambda \Delta_{0,1})\vec{x} = 0, \ldots, (\Delta_{1,k} - \lambda \Delta_{0,k})\vec{x} = 0\) coincide. So \(\vec{x}\) is an eigenvector of (15), then \(\text{Ker}(\Delta_{1,1} - \lambda \Delta_{0,1}) \cap \ldots \cap \text{Ker}(\Delta_{1,k} - \lambda \Delta_{0,k}) \neq \{\theta\}\) Theorem 3 is proved.

Application. In the case when all operators in all operator pencils (5) are the real numbers, Hilbert spaces \(H_i = R, (i = 1, 2, \ldots, n)\). we have \(n\) polynomials

\[
\begin{align*}
 b_i(x) = b_{0,i} + b_{1,i} x + \ldots + b_{k,i} x^{k_i} \\
 i = 1, 2, \ldots, n
\end{align*}
\]

(23)

when the variable \(x\) is the parameter \(\lambda\) in (5). Then the polynomials (23) have the common solution then and only then when \(\bigcap_{i=1}^{n} \text{Ker} R_i \neq \{\theta\}\). \(R_i\) are constructed by the formula (6), in which the operators \(B_{x,i}\) are replaced by the numbers \(b_{x,i}\).

REFERENCES