Skew - Commuting Derivations of Noncommutative Prime Rings

Mehsin Jabel Atteya*, Dalal Ibraheem Rasen

Department of Mathematics, College of Education, Al-Mustansiriyah University, Baghdad, Iraq

Abstract The main purpose of this paper is study and investigate a skew-commuting and skew-centralizing d and g be a derivations on noncommutative prime ring and semiprime ring R, we obtain the derivation d(R)=0 (resp. g(R)=0).

Keywords Skew-commuting, Derivation, Noncommutative Prime Ring, Semiprime Ring

2000Mathematics Subject Classification: 47A50, 47B50

1. Introduction

Derivations on rings help us to understand rings better and also derivations on rings can tell us about the structure of the rings. For instance a ring is commutative if and only if the only inner derivation on the ring is zero. Also derivations can be helpful for relating a ring with the set of matrices with entries in the ring (see, [5]). Derivations play a significant role in determining whether a ring is commutative, see ([1],[3],[4],[18],[19] and [20]).Derivations can also be useful in other fields. For example, derivations play a role in the calculation of the eigenvalues of matrices (see, [2]) which is important in mathematics and other sciences, business and engineering. Derivations also are used in quantum physics(see, [18]). Derivations can be added and subtracted and we still get a derivation, but when we compose a derivation with itself we do not necessarily get a derivation. The history of commuting and centralizing mappings goes back to (1955) when Divinsky [6] proved that a simple Artinian ring is commutative if it has a commuting nontrivial automorphism. Two years later, Posner[7]has proved that the existence of a non-zero centralizing derivation on prime ring forces the ring to be commutative (Posner's second theorem). Luch [8]generalized the Divinsky result, we have just mentioned above, to arbitrary prime ring. In[9] M.N.Daif, proved that, let R be a semiprime ring and d a derivation of R with d^2≠0 . If [d,x,d,y]=0 for all x, y ∈ R, then R contains a non-zero central ideal. M.N.Daif and H.E. Bell [10] proved that, let R be a semiprime ring admitting a derivation d for which either xy+d(xy)= yx+d(yx) for all x, y ∈ R or xy-d(xy)= yx-d(yx) for all x, y ∈ R , then R is commutative. V.DeFilippis [11] proved that, when R is a prime ring let d a non-zero derivation of R , U≠(0) a two-sided ideal of R , such that d([x,y])=[x,y] for all x,y ∈ U , then R is commutative. Recently A.H. Majeed and Mehsin Jabel [12] , give some results as , let R be a 2-torsion free semiprime ring and U a non-zero ideal of R .R admitting a non-zero derivation d satisfying d([d(x),d(y)])=[x,y] for all x,y ∈ U. If d acts as a homomorphism, then R contains a non-zero central ideal. Our aim in this paper is to investigate skew-commuting d and g be derivations on noncommutative prime ring and semiprime ring R.

2. Preliminaries

Throughout R will represent an associative ring with identity, Z(R) denoted to the center of R , R is said to be n-torsion free, where n ≠ 0 is an integer, if whenever n x= 0,with x ∈ R, then x = 0. We recall that R is semiprime if xRx = (0) implies x = 0 and it is prime if xRy = (0) implies x = 0 or y = 0. A prime ring is semiprime but the converse is not true in general. An additive mapping d: R→R is called a derivation if d(xy) = d(x)y+ xd(y) holds for all x ,y ∈ R , and is said to be n-centralizing on U (resp. n-commuting on U) , if [x^n ,d(x)] ∈ Z(R) holds for all x ∈ U (resp. [x^n ,d(x)]= 0 holds for all x ∈ U) , where n be a positive integer . Also is called skew-centralizing on subset U of R (resp. skew-commuting on subset U of R) if d(x)x+xd(x) ∈ Z(R) holds for all x ∈ U (resp.d(x)x+xd(x)=0 holds for all x ∈ U),and d acts as a homomorphism on U(resp. anti-homomorphism on U) if d(xy)= d(x)d(y) holds for all x,y ∈ U (resp. if d(xy)= d(y)d(x) holds for all x,y ∈ U). We write [x,y] for xy – yx and make extensive use of basic commutator identities [xy,z]=x[y,z]+ [x,z]y and [x,yz]=y [x,z] +[x,y]z . In some parts of the proof our theorems(3.1 and 3.2), we using same technique in [21].

First we list the lemmas which will be needed in the sequel.

Lemma1[7]
If d is commuting derivation on noncommutative prime ring, then $d=0$.

Lemma 2 [13: Theorem 1.2]
Let S be a set and R a semiprime ring. If functions d and g of S into R satisfy $d(s)xg(t)=g(s)d(t)$ for all $s,t\in S$, $x \in R$, then there exists idempotents a_i, $\alpha_i \in C$ and an invertible element $\lambda \in C$ such that $a_i \alpha_j = \delta_{ij}$, for $i \neq j$.

Lemma 3 [14: Theorem 2]
Let R be a semiprime ring and U a non-zero ideal of R. If d is a derivation of R which is centralizing on U, then d is commuting derivation on U.

Lemma 4 [15: Lemma 4]
Let R be a semiprime ring and U a non-zero ideal of R. If d is a derivation of R which is centralizing on U, then d is commuting derivation on R, $d=0$.

3. The Main Results

Theorem 3.1
Let R be a noncommutative prime ring, d and g be a derivations of R. If R admits to satisfy $d(x)x+g(x)\in Z(R)$ for all $x \in R$, then $d(R)=0$ (resp. $g(R)=0$) or $w(d)(d)$ is skew commutating on R. Thus

\[[d(x)+g(x),y]=0 \quad \text{for all } x,y \in R. \]

Now from (6) and (7), we obtain $w(d)(d)(d)(d)=0$ for all $x,y \in R$. Since $w \in Z(R)$, this relation gives

\[w^2(d)(d)(d)(d)=0 \quad \text{for all } x,y \in R. \]

Replacing y by zy, with using (8), we get $w^2z(d)(d)(d)=0$ for all $x,y \in R$, which implies

\[wzw(d)(d)(d)=0 \quad \text{for all } x,y \in R. \]

Replacing z by $[d(x)+g(x)]z$ and since R is prime ring, which implies

\[w[d(x)+g(x),y]=0 \quad \text{for all } x,y \in R. \]

Also from (2), we obtain

\[[d(x)+d(w)x+g(w)x+wg(x),y]=0 \quad \text{for all } x,y \in R. \]

Thus from (6) and (7), we obtain $w(d)(d)(d)(d)=0$ for all $x,y \in R$. Since $w \in Z(R)$, this relation gives

\[w^2(d)(d)(d)(d)=0 \quad \text{for all } x,y \in R. \]

Replacing y by zy, with using (8), we get $w^2z(d)(d)(d)=0$ for all $x,y \in R$, which implies

\[wzw[d(x)+g(x),y]=0 \quad \text{for all } x,y \in R. \]

Since $w \in Z(R)$, this

\[[d(x)+g(x),y]=0 \quad \text{for all } x,y \in R. \]

Thus from (6) and (7), we obtain $w(d)(d)(d)(d)=0$ for all $x,y \in R$. Since $w \in Z(R)$, this relation gives

\[w^2(d)(d)(d)(d)=0 \quad \text{for all } x,y \in R. \]

Replacing y by zy, with using (8), we get $w^2z(d)(d)(d)=0$ for all $x,y \in R$, which implies

\[wzw[d(x)+g(x),y]=0 \quad \text{for all } x,y \in R. \]

Since $w \in Z(R)$, this

\[[d(x)+g(x),y]=0 \quad \text{for all } x,y \in R. \]

Thus from (6) and (7), we obtain $w(d)(d)(d)(d)=0$ for all $x,y \in R$. Since $w \in Z(R)$, this relation gives

\[w^2(d)(d)(d)(d)=0 \quad \text{for all } x,y \in R. \]

Replacing y by zy, with using (8), we get $w^2z(d)(d)(d)=0$ for all $x,y \in R$, which implies

\[wzw[d(x)+g(x),y]=0 \quad \text{for all } x,y \in R. \]

Since $w \in Z(R)$, this

\[[d(x)+g(x),y]=0 \quad \text{for all } x,y \in R. \]

Thus from (6) and (7), we obtain $w(d)(d)(d)(d)=0$ for all $x,y \in R$. Since $w \in Z(R)$, this relation gives

\[w^2(d)(d)(d)(d)=0 \quad \text{for all } x,y \in R. \]

Replacing y by zy, with using (8), we get $w^2z(d)(d)(d)=0$ for all $x,y \in R$, which implies

\[wzw[d(x)+g(x),y]=0 \quad \text{for all } x,y \in R. \]

Since $w \in Z(R)$, this

\[[d(x)+g(x),y]=0 \quad \text{for all } x,y \in R. \]

Thus from (6) and (7), we obtain $w(d)(d)(d)(d)=0$ for all $x,y \in R$. Since $w \in Z(R)$, this relation gives

\[w^2(d)(d)(d)(d)=0 \quad \text{for all } x,y \in R. \]

Replacing y by zy, with using (8), we get $w^2z(d)(d)(d)=0$ for all $x,y \in R$, which implies

\[wzw[d(x)+g(x),y]=0 \quad \text{for all } x,y \in R. \]

Since $w \in Z(R)$, this

\[[d(x)+g(x),y]=0 \quad \text{for all } x,y \in R. \]
central for all \(w \in Z(R) \).

Theorem 3.2

Let \(R \) be a noncommutative prime ring, \(d \) be a skew-centralizing derivation of \(R \) (resp. \(g \) be a skew-centralizing derivation of \(R \)), if \(R \) admits to satisfy \(d(x)+xg(x) \in Z(R) \) for all \(x \in R \). Then \(d(R)=0 \) (resp. \(g(R)=0 \)).

Proof: Let \(x_0 \in R \) and \(c=d(x_0)x_0+x_0g(x_0) \). Thus, according to our hypothesis, we obtain \(c \in Z(R) \). Then by Theorem 3.1, we get \(cd \) and \(cg \) are commuting, then \([cd(x),y]=0 \) for all \(x,y \in R \). Then \(c(d(x))=c \) for all \(x \in R \). Hence \(cd(x)=cy+xd(y)+d(y)x=cd(x) \) for all \(x \in R \). Then \(cd(x)c=cd(x) \) for all \(x,y \in R \). Therefore, the first identity of (15) becomes \(cd(x)c=cd(x) \) for all \(x,y \in R \). (16)

Replacing \(y \) by \(-x \) in (16), we obtain \(cd(x)c=cd(x) \) for all \(x \in R \). Thus, we get \(cd(x)c=cd(x) \) for all \(x \in R \). Hence \(cd(x)c=cd(x) \) for all \(x \in R \). Then \(cd(x)c=cd(x) \) for all \(x \in R \). Since \(cg \) is central, therefore, analogously, it follows that \(cg(x)=0 \) for all \(x \in R \). Hence \(cd(x)=cd(x) \) for all \(x \in R \). Hence \(cd(x)c=cd(x) \) for all \(x \in R \). Thus from these relations, we obtain \(cd(x)c=cd(x) \) for all \(x \in R \).

In particular, \(cd(x)c=cd(x) \) for all \(x \in R \). Since \(c \) is an arbitrary element of \(R \), therefore, \(cd(x)c=cd(x) \) for all \(x \in R \). (17)

If we taking \(d(x)=g(x) \), then \(d(x)+xg(x)=0 \) for all \(x \in R \). Then by using Lemma 3, we obtain \(d(R)=0 \) (resp. \(g(R)=0 \)).

If \(d(x)\neq g(x) \), this case lead to \(d(x)x+xg(x) \in Z(R) \) for all \(x \in R \). By Theorem 3.1, we complete our proof.

Theorem 3.3

Let \(R \) be a 2-torsion free semiprime ring with cancellation property. If \(R \) admits a derivation \(d \) to satisfy

(i) \(d \) acts as a skew-commuting on \(R \).

(ii) \(d \) acts as a skew-xentralizing on \(R \). Then \(d(R) \) is commuting on \(R \).

Proof: (i) Since \(d \) is skew-commuting, then \(d(x)+xg(x)=0 \) for all \(x \in R \). (18)

Left multiplying (18) by \(x \), we obtain \(x(x)+x^2d(x)=0 \) for all \(x \in R \). (19)

From (18), we get \(d(x)=0 \) for all \(x \in R \). (20)

In (20) replacing \(x \) by \(xy \), we obtain \(d(x)+y=x^2d(x)+y^2d(x)=0 \) for all \(x,y \in R \). According to (20), a above equation become \(d(xy)+y=0 \) for all \(x,y \in R \). Then \(d(xy)+y=0 \) for all \(x,y \in R \). Replacing \(y \) by \(x^2 \) and according to (20), we arrived to \(d(x^2)+x^2d(x)=0 \) for all \(x \in R \). (21)

Then \(x^2d(x)=x^2d(x)x^2 \) for all \(x \in R \).

By substituting (21) in (19), we get \(x^2d(x)+x^2d(x)=0 \) for all \(x \in R \). Then \([x,d(x)]=0 \) for all \(x \in R \). Then apply the cancellation property on \(x \), we get \([x,d(x)]=0 \) for all \(x \in R \). Then \(d(R) \) is commuting on \(R \).

(ii) We will discuss, when \(d \) acts as a skew-centralizing on \(R \).

Then we have \(d(x)x+x(x) \in Z(R) \) for all \(x \in R \). \(d(x)x \in Z(R) \) for all \(x \in R \). i.e.

\[[d(x),r]=0 \] for all \(x,r \in R \). (22)

Also, by replacing \(r \) by \(x \) in (22), we obtain \(d(x)+x=0 \) for all \(x \in R \). Then \(d(x)x+x^2d(x)=0 \) for all \(x \in R \). Then \(d(x)x^2-x^2d(x)=0 \) for all \(x \in R \). Then \([d(x),x]=0 \) for all \(x \in R \). (23)

In (22), replacing \(x \) by \(x+y \), we obtain \([d(x+y)+d(y)+d(y),r]=0 \) for all \(x,y,r \in R \). According to (22), we obtain \([d(x)+y,x]=0 \) for all \(x,y \in R \). Replacing \(y \) by \(x \), we obtain \([d(x)+x^2d(x)+x^2d(x),r]=0 \) for all \(x,r \in R \). According to (22) and (23), we get \([x^2d(x)+x^2d(x),r]=0 \) for all \(x,r \in R \). Then \(2d(x)^2d(x),r]=0 \) for all \(x,r \in R \). Since \(R \) is 2-torsion free, we obtain \([x^2d(x),r]=0 \) for all \(x,r \in R \). Then \([x^2d(x),r]=0 \) for all \(x,r \in R \). According to (22), above equation become \(2d(x)^2d(x),r]=0 \) for all \(x,r \in R \). Replacing \(r \) by \(x \), we obtain \(2x^2d(x),r]=0 \) for all \(x \in R \). Applying the cancellation property on \(x^2 \), we get \([d(x),x]=0 \) for all \(x \in R \). We complete the proof of theorem.
Theorem 3.4

Let R be a 2-torsion free noncommutative prime ring. If R admits a derivation d to satisfy one of following
(i) d acts as a homomorphism on R. Then d(R)=0.
(ii) d acts as an anti-homomorphism on R. Then d(R)=0.

Proof: (i) d acts as a homomorphism on R. We have d is a derivation, then
\[d(xy)=d(x)y+xd(y) \] for all x, y ∈ R. Then
\[d(xyz)=d(xyz)+d(xyz) = d(xyz)+d(xyz) \] for all x, y, z ∈ R. Since d acts as a homomorphism, then \[d(xy)z=d(x)yz+xd(yz) \] for all x, y, z ∈ R. Therefore, d is skew-commuting on R, i.e. d(R)=0.

Theorem 3.3 and Theorem 3.4, we can’t exclude the condition char.R≠2, \(d \) is skew-centralizing on R. Then by Theorem3.2, we obtain d(R)=0. Then \[\{d(x)2,x\}=0 \] for all x ∈ R. Thus d is skew–centralizing and skew-commuting on R, i.e. d(R)=0.

Acknowledgements

The author would like to thank the referee for her/his useful comments.

REFERENCES

