Coincidence Points in Ordered Cone Metric Spaces

Kasani Prudhi

Department of Mathematics, University College of Science, Saifabad, Osmania University, Hyderabad, Telangana State, India
*Corresponding Author: prudhvikasani@rocketmail.com

Abstract
In this paper, we prove a coincidence point theorem for two self-mappings in an ordered cone metric spaces, without using normality and continuity. Our result extends and improves some recent results existing in the literature.

Keywords Coincidence Point, Cone Metric Space, Ordered Sets, Weakly Decreasing Maps of Type A

1. Introduction and Preliminaries

In 2007, Huang and Zhang [4] introduced the concept of cone metric space by substituting an ordered Banach space for real numbers it is generalization of the metric space. And proved fixed point theorems of contractive type mappings over cone metric spaces. Later on, many authors generalized their fixed point theorems to different types of contraction mappings in cone metric spaces (see, e.g. [1, 2, 3, 6, 7]). Recently, Wasfi Shatanawi [8] obtained some coincidence point results in cone metric spaces. In this paper, we prove a coincidence point theorem for two self mappings in an ordered cone metric spaces, without using normality and continuity, which extends and improves the results of [8].

Throughout this paper B is a real Banach space, θ denotes zero element of B.

The following definitions are due to Huang and Zhang [4].

Definition 1.1[4] Let B be a real Banach Space and P a subset of B .The set P is called a cone if and only if:

(a). P is closed, non –empty and P ≠ {θ};
(b). a,b ∈ R , a,b ≥ 0 , x, y ∈ P implies ax+by ∈ P;
(c). x ∈ P and -x ∈ P implies x = θ.

Definition 1.2[4].Let P be a cone in a Banach Space B , define partial ordering ‘≤’ with respect to P by x≤y if and only if y-x ∈ P .We shall write x<y to indicate x≤y but x≠y while x<y will stand for y-x ∈ Int P , where Int P denotes the interior of the set P. This Cone P is called an order cone. It can be easily shown that λ ≤ P ⊂ (P) for all λ ∈ ℝ+ .

Definition 1.3[4]).Let B be a Banach Space and P ⊂ B be an order cone .The order cone P is called normal if there exists K>0 such that for all x,y ∈ B, 0≤ x ≤ y implies ∥x∥≤K ∥y∥.
The least positive number K satisfying the above inequality is called the normal constant of P.

Definition 1.4[4]).Let X be a nonempty set of B .Suppose that the map d: X × X → B satisfies:

(d1). 0<d(x,y) for all x,y∈ X and d(x, y) = 0 if and only if x = y ;
(d2). d(x, y) = d(y, x) for all x, y∈ X ;
(d3). d(x, y)≤d(x, z)+d(y, z) for all x, y, z∈ X .

Then d is called a cone metric on X and (X, d) is called a cone metric space.

Definition 1.5[4]).Let (X,d) be a cone metric space .We say that {xₙ} is

(i) a Cauchy sequence if for every c in B with c>> ,there is N such that for all n,m>N, d(xₙ, xₘ)<<c ;
(ii) a convergent sequence if for any c >>,there is an N such that for all n>N, d(xₙ, x) <<c, for some fixed x in X .

We denote this xₙ → x (as n → ∞)

The space (X, d) is called a complete cone metric space if every Cauchy sequence is convergent.

The concept of weakly decreasing maps type A introduced by W. Shatanawi [8].

Definition 1.6[8]).Let (X,⊑) be partially ordered set and let f, T: X→X be two maps. We say that f is weakly decreasing type A with respect to T if the following conditions hold:

(i). For all x∈X, we have that fx⊑ fy for all y∈T⁻¹(fx).
(ii) TX ⊆ fx.

Definition 1.7[5]).Let (X, d) be a cone metric space and f, g: X→X be two self-maps. The pair {f, g} is said to be compatible if, for an arbitrary sequence {xₙ}⊂X such that

limₙ→∞ f xₙ = limₙ→∞ g xₙ = t ∈ X, and for arbitrary c ∈ int (P), there exists n₀∈ℕ such that d(fgxₙ, xₙ)}
gfxn) << c whenever n > n_0. It is said to be weakly compatible if fx = gx implies gfx = gfx.

Definition 1.8 ([1]). For the mapping f, g: X → X. If w = fz = gz for some z in X, then z is called a coincidence point of f and g.

Theorem 2.1. Let (X, ≤) be partially ordered set and (X, d) be a cone metric space over a solid cone P. Let f, T: X → X be two self maps such that

\[d(Tx, Ty) \leq a_1d(fx, fy) + a_2d(fx, Tx) + a_3d(fy, Ty) + a_4d(fx, Ty) \]

for all x, y ∈ X for which fx and fy are comparable.

Assume that f and T satisfy the following conditions:

(i). If \{x_n\} is a non-decreasing sequence in X with respect to ≤ such that x_n → x as n → +∞, then x_n ≤ x for all n ∈ N.

(ii). f is weakly decreasing type A with respect to T.

(iii). fX is complete subspace of X.

If \(a_1, a_2, a_3, a_4\) are non-negative real numbers with \(a_1 + a_2 + a_3 + a_4 \in (0,1)\), then f and T have a coincidence point in X, that is there exists u ∈ X such that fu = Tu.

Proof: Let x_0 ∈ X. Since TX ⊆ fX, we can choose x_1 ∈ X such that Tx_0 = fx_1. Also since TX ⊆ fX we can choose x_2 ∈ X such that Tx_1 = fx_2. Continuing this process, we can construct a sequence \(\{x_n\}\) in X such that \(Tx_n = fx_{n+1}\). Since \(x_n \in X\) for all n ∈ N, then by using the assumption that f is weakly decreasing of type A with respect to T, we have

\[fx_0 \geq fx_1 \geq fx_2 \cdots \]

By the condition (1) we have,

\[d(Tx_n, Tx_{n+1}) \leq a_1d(fx_n, fx_{n+1}) + a_2d(fx_n, Tx_n) + a_3d(fx_{n+1}, Tx_{n+1}) + a_4d(fx_n, Tx_{n+1}) \]

\[\leq (\frac{a_1 + a_2 + a_4}{1 - a_3 - a_4})d(Tx_0, Tx_1) \]

Putting, k = \(\frac{a_1 + a_2 + a_4}{1 - a_3 - a_4}\) < 1. We obtain,

\[d(Tx_n, Tx_{n+1}) \leq k d(Tx_{n-1}, Tx_n) \]

Thus, for n ∈ N, we have

\[d(Tx_n, Tx_{n+1}) \leq k d(Tx_{n-1}, Tx_n) \leq k^2 d(Tx_{n-2}, Tx_{n-1}) \leq \cdots \leq k^n d(Tx_0, Tx_1) \]

Let n, m ∈ N with m > n. Then

\[d(Tx_n, Tx_m) \leq k^n d(Tx_0, Tx_1) \to 0 \text{ as } n \to +\infty. \]

We shall show that \(\{Tx_n\}\) is a Cauchy sequence in (X, d). For this, let c >> θ be given. Since c ∈ int(P), then there exists a neighborhood of θ, \(N_0(\delta) = \{y \in B: \|y\| \leq \delta\}, \delta > 0\), such that \(c + N_0(\delta) \subseteq \text{int}(P)\). Choose a natural number N_1 such that

\[\frac{-k N_1}{1-k} d(Tx_0, Tx_1) < \delta. \]

Then for all n ≥ N_1 we have that \(\frac{-k N_1}{1-k} d(Tx_0, Tx_1) \in N_0(\delta)\).

Hence, \(c \cdot \frac{-k N_1}{1-k} d(Tx_0, Tx_1) \in c + N_0(\delta) \subseteq \text{int}(P)\).

Thus, we have that for all n ≥ N_1,

\[\frac{-k N_1}{1-k} d(Tx_0, Tx_1) \leq c. \]

By (3) and (4), it follows that

\[d(Tx_n, Tx_m) \leq c \text{ whenever } n \geq N_1. \]

Hence, \(\{Tx_n\}\) is a Cauchy sequence in X. Since, TX ⊆ fX.

Therefore, \(\{fx_n\}\) is a Cauchy sequence in fX. Since, fX is complete, then there exists u = fv for some v ∈ X such that \(\lim_{n \to \infty} f x_n = u = fv\). Since \(\{fx_n\}\) is a non-decreasing sequence in X, then fx_n ⊆ fxv for all n ∈ N, then by (5) we have

\[d(Tx_n, Tv) \leq a_1d(fx_n, fxv) + a_2d(fx_n, Tx_n) + a_3d(fv, Tv) + a_4d(fx_n, Tv) \]

By the triangle inequality and (5) we have

\[d(fv, Tv) \leq d(fv, fxv) + d(fx_n, Tx_n) + d(Tx_n, Tv) \]

\[\leq (1 + a_1) d(fv, fxv) + (1 + a_2) d(fx_n, Tx_n) + a_3d(fv, Tv) + a_4d(fx_n, Tv) \]

\[\leq (1 + a_1) d(fv, fxv) + (1 + a_2) d(fx_n, Tx_n) + a_3d(fv, Tv) + a_4d(fx_n, Tv) \]

\[\leq (1 + a_1 + 1 + a_2 + a_4) d(fv, fxv) + (1 + a_2) d(fv, Tx_n) + a_3d(fv, Tv). \]
Hence, we have
\[1 - (a_3 + a_4) d(fv, T_v) \leq 2 + a_1 + a_2 + \frac{a_3 + a_4}{1 - (a_3 + a_4)} d(fv, fx_n) + \frac{1 + a_2}{1 - (a_3 + a_4)} d(fv, Tx_n). \]

Let \(c > \theta \) be given. Choose \(k_1, k_2 \in \mathbb{N} \) such that
\[(fv, fx_n) \leq \frac{1 - (a_3 + a_4)c}{2 + a_1 + a_2 + a_4} \]
for each \(n \geq k_1 \), and
\[d(fv, Tx_n) = d(fv, fx_{n+1}) \leq \frac{1 - (a_3 + a_4)c}{2(1 + a_2)}, \]
for each \(n \geq k_2 \).

Let \(k = \max\{k_1, k_2\} \).
Then, \(d(fv, T_v) \leq \frac{c}{m} + \frac{c}{m} = c \). (by (4), (5) and (6)).

Since \(c \) is arbitrary, we get that
\[d(fv, T_v) \leq \frac{c}{m} \]
for each \(m \in \mathbb{N} \).

Noting that \(\frac{c}{m} \to 0 \) as \(m \to \infty \),
we conclude that \(\frac{c}{m} d(fv, T_v) \to -d(fv, T_v) \) as \(m \to \infty \).

Since \(P \) is closed, then \(\{d(fv, T_v)\} \in P \).
Thus \(d(fv, T_v) \in \mathbb{P} \setminus (-P) \).
Hence, \(d(fv, T_v) = 0 \).
Therefore, \(fv = T_v \).
Then \(f \) and \(T \) have a coincidence point \(v \in X \).

Remark 2.2. If we take \(a_4 = 0 \) in the above Theorem 2.1, then we get the Theorem 2.3 of [8].

Remark 2.3. If we take \(a_1 = \lambda \) and \(a_2 = a_3 = a_4 = 0 \) in the above Theorem 2.1, then we get the following Corollary.

Corollary 2.4. Let \((X, \leq)\) be partially ordered set and \((X, d)\) be a complete cone metric space over a solid cone \(P \). Let \(f, T : X \to X \) be two maps such that
\[d(Tx, Ty) \leq \lambda d(fx, fy) \]
for all \(x, y \in X \) for which \(fx \) and \(fy \) are comparable. Assume that \(f \) and \(T \) satisfy the following conditions:
(i) \(\{x_n\} \) is a non-decreasing sequence in \(X \) with respect to \(\leq \) such that \(x_n \to x \) as \(n \to +\infty \), then \(x_n \leq x \) for all \(n \in \mathbb{N} \).
(ii) \(f \) is weakly decreasing type \(A \) with respect to \(T \).
(iii) \(fx \) is complete subspace of \(X \).
If \(\lambda \) is a non-negative real number with \(\lambda \in [0,1) \), then \(f \) and \(T \) have a coincidence point in \(X \).

Acknowledgments

The author thanks the referees for giving valuable suggestions to improve this paper.

REFERENCES

