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Abstract  This paper describes our studies of the 
suspended particulate matter (SPM) in the Liverpool Bay 
(UK).  Monitoring data were analyzed by using entropy 
analysis. Entropy analysis of in situ particle size spectra 
revealed 5 basic types, attributable to different sets of 
environmental conditions. The revealed basic types of in situ 
particle size spectra were then subjected to the classification 
trees analysis in order to identify the meteorological and 
oceanographic variables of importance for the 
characterisation of the shape of SPM spectra. The results 
obtained are a step towards a better characterisation of the 
floc size, and therefore a more precise calculation of the 
sedimentation and transport rate, and are therefore relevant 
to the scientific analysis of a wider range of environmental 
issues. 
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1. Introduction 
Suspended particulate matter (SPM) is of fundamental 

importance in issues of ocean engineering. Its dynamics is 
indispensable for understanding of corrosion and abrasion of 
materials, and also the formation of fluid mud, and is 
therefore relevant to issues of navigation and channel 
maintenance (Schrottke et al., 2006; Schwartz & Kozerski, 
2003). SPM is also important as regards issues of aquatic 
ecology and environmental management (Hakanson & 
Eckhell 2005) as it is intimately related to the transport of 
pollutants and influences water clarity and primary 
production, and hence also secondary production (Krivtsov 
et al. 2008b). Consequently, SPM characterisation has 
recently been among the increasingly important topics as 
regards pollution control, environmental auditing and 
management (Audry et al. 2006; Guo et al. 2007; He et al. 
2006; Karrasch et al. 2006; Maldonado et al. 1999; 

Manjunatha et al. 2001; Shankar & Manjunatha 1994; Zhou 
et al. 2000), and  ecological modelling (Barros & Abril 
2005; Ebenhoh et al. 2004; Hakanson & Eckhell 2005; 
Hakanson et al. 2004; Hakanson et al. 2005; Hakanson et al. 
2000; Johansson et al. 2001; Krivtsov et al. 2008a; 
Lindstrom 2001; Lindstrom et al. 1999; Malmaeus & 
Hakanson 2003, 2004). 

The in situ particle size spectrum of suspended particulate 
matter in aquatic environment influences the feeding pattern 
of bottom fauna  (Cranford et al. 2005), affects the 
transmission and reflectance of light in water (Mikkelsen 
2002) and is of importance for numerous sedimentological 
and a wide range of ecological processes (Krivtsov et al. 
2008b).  It has previously been shown (Sharp & Fan 1963) 
that such  parameters as mean/median particle size and 
standard or median absolute deviation can be incomplete or 
even misleading descriptors of the shape of the size spectrum, 
in particular for multi-modal spectra (Mikkelsen et al. 2007; 
Mikkelsen et al. 2005). Here we have applied a combination 
of entropy modelling with regression tree analysis to deduce 
5 basic types of SPM spectra, and describe their relationships 
with environmental variables. 

2. Materials and Methods 

2.1. Site Description 

The data presented here were collected in Liverpool Bay, 
an area of the Irish Sea important as regards recreation and 
shipping (Figure 1).  The site is characterised by tidal 
straining, intertidal regions with exposed banks, high 
suspended sediment concentration and complex 
biogeochemical interactions.  Tidal currents are strong (up 
to 1 m/s during springs) and there are occasional large storm 
surges and waves (in particular associated with westerly 
winds). The principal freshwater inputs are from rivers 
Mersey, Dee and Ribble. Further information about the area 
can be found in our previous publication and references 
therein (Krivtsov et al. 2008b). 
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Figure 1.  Location of the study site 

2.2. Observations 

The observational data forming the basis of this paper 
come from 9 cruises carried out by the Proudman 
Oceanographic Laboratory and School of Ocean Sciences 
(Bangor) on the RV Prince Madog, which took place 
between Sep 2004 and Feb 2006. The oceanographic 
variables measured during the cruises using a profiling CTD 
package are standard, and include (among others) 
temperature, salinity, conductivity, beam attenuation, 
chlorophyll a fluorescence, photosynthetic active radiation 
(PAR). Data on wave characteristics are available from the 
CEFAS wave rider buoy. The principal observational 
evidence comes from the LISST-100 laser, which provides 
in situ estimates of volume concentrations in µl/l for 32 size 
classes corresponding to particle sizes between 2.5 and 500 
µm (Agrawal & Pottsmith 2000). 

2.3. Entropy Analysis 

Entropy analysis has previously (Mikkelsen et al. 2007) 
been used to classify in situ particle (floc) size spectra of 
suspended particles into groups based on similar distribution 
characteristics. It was evident that the in situ spectra sorted 
into groups that reflected different forcing conditions (e.g. 
variations in turbulence). Importantly, the different forcing 
conditions were not necessarily reflected in other commonly 
used distribution measures such as median floc diameter; this 
suggests that entropy  analysis may be an effective approach 
for investigating the effect of changes in forcing conditions 
on floc size (Sharp & Fan 1963). 

In information theory, the concept of entropy is related to 
the randomness of an event or a signal. Essentially, entropy 
links the information content of a signal to its randomness – 
if a signal has a high entropy (high randomness) the 
information content is low and vice versa. In particle size 
terms, this can be illustrated by considering a completely flat 
size spectrum, i.e. all volume (or mass) in the size spectrum 
occurs with the same frequency throughout the spectrum. 

This is essentially a random distribution of matter throughout 
the size spectrum, so a size spectrum with this shape has 
maximum entropy. Conversely, in a size spectrum where all 
particle volume or mass is found in only one bin there is no 
randomness of the distribution, so the entropy for such a 
spectrum is at a minimum. Therefore, a particle size 
spectrum can be characterized in terms of its entropy. For a 
particle size spectrum with n size bins, the entropy, E, is 
given as: 

          (1) 

where pi is the proportion of particles in size bin I(Shannon 
1948 ). Note that when pi = 0, pi log pi = 0 (according to 
L'Hôspital's rule). The entropy can vary between a maximum 
value, EMAX of log n when all pi = 1/n and a minimum value, 
EMIN, of zero when pi = 1 for exactly one of the bins i = 1…n. 
The entropy is related to the information gain, I, which is 
also known as the inequality statistic, by the equation: 

              (2) 

When E equals EMAX, the proportion of particles is the same 
in all size bins, and I equals zero. As the value of I increases, 
the information content of the size spectrum increases. 

With an ensemble of size spectra, the inequality statistic 
can be used to divide the spectra into groups. Optimal 
grouping maximizes the inequality between the groups and 
minimizes the inequality within the group, so the spectra in 
each group all have similar shapes, and the shapes of the 
spectra differ mainly between groups. The first step in 
grouping size spectra is to express the proportion of particles 
in each size bin of each size spectrum as proportions of the 
grand total(Johnston & Semple 1983). For size distributions 
expressed as volume concentrations, the volume 
concentration in each size bin of each spectrum must be 
divided by the grand total volume concentration, defined as 
the sum of the volume concentration in all bins in all spectra: 
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         (3) 

where N is the number of spectra, J is the number of size bins 
in each spectrum, VCij is the volume concentration in 
spectrum i, bin j and Yij is the proportion of the total volume 
concentration in spectrum i, bin j. 

Following Johnston and Semple (Johnston & Semple 
1983), the total inequality for all spectra is then given as: 

      (4) 

where and Yi = Yij/Yj. 
In case the spectra have been divided into R groups, a 
measure of the efficiency of the grouping (in terms of 
maximising between-group inequality) can be obtained from 
the so-called RS statistic: 

RS=(IB/I)100            (5) 
In Eq. (5) IB is the between-group inequality, which is 
defined as: 

     (6) 

where pjr=(∑i rYij)/Yj, and Nr is the number of spectra in 
group r of R. High RS values indicate that the inequality is 
mostly related to differences between the groups and that the 
inequality within each group is low. In short, the spectra 
within each group have similar shapes, and the shapes of the 
spectra differ mainly between groups. 

Unfortunately there is no way to predict in advance how 
the spectra should be grouped or how many groups are 
desirable. The only way to obtain a best grouping (simply 
defined as the best RS statistic) is to perform all possible 
combinations of N spectra into R groups, compute the RS 
statistic for each of the combinations and then choose the 
combination that yields the largest RS statistic for that 
number of groups. This problem is well known from other 
grouping techniques such as, for example, principal 
component analysis, where the full set of principal 
components is as large as the original set of variables, but the 
vast majority of the variation usually can be explained by the 
first two to four principal components. 

Johnston and Semple (1983) provided a FORTRAN 
routine that automatically arranges the data into a 
user-selected number of groups, and then shifts them 
between groups until an optimal grouping for that number of 
groups is found. Their routine was later adapted to QBASIC 
(Woolfe & Michibayashi 1995) for the analysis of 
sedimentological facies. Entropy analysis was also useful in 
delineating ecological habitats on the Scotian Shelf off Nova 
Scotia, Canada (Orpin & Kostylev 2006). Here we have used 
a Matlab implementation of the Entropy analysis reported 
previously (Mikkelsen et al. 2007). 

2.4. Regression Tree Analysis 

To investigate whether the entropy group of an SPM 

spectrum could be predicted using a set of meteorological 
and oceanographic variables, we applied the data mining 
method of regression trees using a Matlab function ‘treefit’ 
with the ‘classification’ option. The resulting tree was 
subsequently pruned using level 4 and displayed using the 
‘treedisp’ operator. The list of variables used in this analysis 
is given in Table 1. 

Regression trees are a representation for piece-wise 
constant or piece-wise linear functions, and models are given 
in a form of hierarchical structures of their elements. The 
models predict the value of a dependent variable (i.e. in our 
case, the entropy group type of the SPM spectra) from the 
values of a set of independent variables. The space of 
examples is partitioned into axis-parallel rectangles and a 
model is fitted to each of these partitions. A regression tree 
has an inverse hierarchical structure with a test in each inner 
node (junction from were two links go to the lower 
hierarchical levels).  Each node tests the value of a certain 
independent variable, and each leaf (the lowest level of 
hierarchical tree) displays a linear equation or (in the 
analysis presented here) just a constant for predicting the 
value of the dependent variable. 

3. Results and Discussion 
The 5 groups of spectra resulting from the entropy 

analysis are displayed in Figure 2, with the groups numbered 
in the ascending order according to the position of the main 
modal. To investigate the relationships between the group 
number and environmental factors, the data were subjected 
to the regression trees analysis. The variables used for this 
analysis were the ones known to be important to the SPM 
characterisation from our previous work and also those 
showing particularly strong correlations with the spectra 
grouping (Krivtsov et al. 2012) 

The classification tree resulting from the regression tree 
analysis is displayed in Figure 3. It shows that the most 
important variables for the characterisation of the SPM 
spectra are temperature, the directions of wind and waves, 
wave period and orbital velocity. The upper level node is 
represented by temperature, thus dividing all the spectra into 
predominantly winter ones (types 1 and 2) and 
predominantly summer ones (types 4 and 5).  The spectra 
belonging to type 3 constituted rather a small group, and 
their occurrence was under broadly similar (albeit somewhat 
more turbulent) conditions as those of type 4 (data not 
shown). 

It should be noted, however, that Type 2 spectra can also 
be observed during warmer periods, provided there are 
sufficiently high levels of turbulence. These may e.g. happen 
either on the tail of a passing depression (when the strong 
swell comes from the W/ NW) or during sufficiently strong 
tidal currents  - see Figure 3. It should also be noted that, 
based on the results of these analysis, at the site studied the 
wave-induced turbulence appears to be more important for 
the SPM characterisation than tidal currents, which is in line 
with our previous work (Krivtsov et al. 2009). 
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Table 1.  List of variables used in the regression tree analysis 

Variable Name Explanation of the variable 

BotSPM  Bottom SPM, mass concentration (gravimetric method)  

SurfSPM Surface SPM, mass concentration (gravimetric method)  

BotV Bottom SPM, volumetric concentration 

SurfV Surface SPM, volumetric concentration 

BotBeamAt Bottom beam attenuation 

SurfBeamAt Surface beam attenuation 

BotMedD Bottom median diameter 

SurfMedD Surface median diameter 

BotVoverD Bottom Volume over Diameter ratio 

SurfVoverD Surface Volume over Diameter ratio 

TDav Water temperature (depth average) 

Transmissometer (beam att.)Dav Beam attenuation of the SeaTech transmissometer 

Sal (PSU)Dav Salinity (depth average) 

Density (kg per m^3)Dav Density (depth average) 

Potential Energy Anomaly  Potential Energy Anomaly  

Tide level Tide level 

Tide current Tide current 

Tide direction Tide direction 

Water Depth Water Depth 

Epsilon proxy Estimate of turbulent kinetic energy dissipation 

DeltaSPM mg per l Difference between bottom and surface SPM mass concentration 

DeltaTotV Difference between bottom and surface SPM volumetric concentration 

DeltaDiameter Difference between bottom and surface median diameter 

DeltaTransm Difference between bottom and surface SPM estimated using a SeaTech transmissometer 

Kolmogorov Scale Kolmogorov Scale 

DominantWaveDir Dominant wave direction 

DominantWaveT Dominant wave period 

MaxOrbitalU Maximum orbital velocity due to  wave action 

WaveEnergy WaveEnergy 

TrueWindSpeed Wind speed 

TrueWindDir Wind direction 

AirTemp Air temperature 

Pressure Atmospheric pressure 

Humidity Humidity 

WindEpsilon TKE dissipation due to wind 

WindWaveAlign Allignment between wind and waves 

WindTideAlign Allignment between wind and tide 

DeltaBotSurfGroups Difference between the recoded bottom and surface group numbers 

GroupBotRecoded Bottom group number 

GrsurfRecoded Surface group number 
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Figure 2.  Groups of spectra resulting from entropy analysis and numbered in the order of the increase in the position of the main modal. Note that group 5 
appears to have the modal outside the coarse end of the measurements window 

 

Figure 3.  Classification tree for the bottom group of the spectra type. Note that Group 3 only constituted a relatively small proportion of the bottom spectra, 
and was therefore ‘pruned’. Dominant wave period is labelled as ’MeanWaveT’; the other variables as in Table 1 

It has previously been argued (Mikkelsen et al. 2007) that 
the shape of the in situ size spectrum must be a function of a 
limited number of variables, including turbulence, biological 
‘stickiness’ and suspended matter concentration. Therefore, 
a group of size spectra that all have approximately the same 
shape should be indicative of a certain set of environmental 
conditions.  Thus the complexity of the in situ size spectra 
in a particular body of water may be reduced to a few groups, 
each typical of the forcing conditions varying within a 
certain limited range (Krivtsov et al. 2012). The results 
presented here not only support these considerations, but 
also provide an insight how the shape of spm spectra could 
be estimated from the concurrent environmental conditions. 
It should be noted, however, that to enable reliable 
predictions the analysis presented here should be repeated 

including data on particle sizes larger than the current 
measurement limit of 500 microns. 

4. Conclusion 
In this paper, we have shown the evidence that a library of 

entropy groups could be built for a particular site, and the 
average shape of the spectrum could subsequently be 
estimated from measurements of the forcing parameters. 
Figure 3 shows how a classification tree analysis could be 
used to deduce the spectra group number from the concurrent 
values of ambient parameters. Potentially, this strategy may 
enable computation of average floc effective density, floc 
settling velocity, and floc fraction, hence providing valuable 
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information for a good range of engineering, environmental 
and ecological modelling applications. 
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