Solving Some Types of Integrals Using Maple

Chii-Huei Yu1,*, Bing-Huei Chen2

1Department of Management and Information, Nan Jeon University of Science and Technology, Tainan City, 73746, Taiwan
2Department of Electrical Engineering, Nan Jeon University of Science and Technology, Tainan City, 73746, Taiwan
*Corresponding Author: chiihuei@mail.nju.edu.tw

Abstract This paper uses the mathematical software Maple for the auxiliary tool to study six types of integrals. We can obtain the infinite series forms of these six types of integrals by using integration term by term theorem. In addition, we propose some examples to do calculation practically. The research methods adopted in this study involved finding solutions through manual calculations and verifying these solutions by using Maple. This type of research method not only allows the discovery of calculation errors, but also helps modify the original directions of thinking from manual and Maple calculations. Therefore, Maple provides insights and guidance regarding problem-solving methods.

Keyword s Integrals, Infinite Series Forms, Integration Term By Term Theorem, Maple

1. Introduction

As information technology advances, whether computers can become comparable with human brains to perform abstract tasks, such as abstract art similar to the paintings of Picasso and musical compositions similar to those of Beethoven, is a natural question. Currently, this appears unattainable. In addition, whether computers can solve abstract and difficult mathematical problems and develop abstract mathematical theories such as those of mathematicians also appears unfeasible. Nevertheless, in seeking for alternatives, we can study what assistance mathematical software can provide. This study introduces how to conduct mathematical research using the mathematical software Maple. The main reasons of using Maple in this study are its simple instructions and ease of use, which enable beginners to learn the operating techniques in a short period. By employing the powerful computing capabilities of Maple, difficult problems can be easily solved. Even when Maple cannot determine the solution, problem-solving hints can be identified and inferred from the approximate values calculated and solutions to similar problems, as determined by Maple. For this reason, Maple can provide insights into scientific research. Inquiring through an online support system provided by Maple or browsing the Maple website (www.maplesoft.com) can facilitate further understanding of Maple and might provide unexpected insights. For the instructions and operations of Maple, [1-7] can be adopted as references.

In calculus and engineering mathematics courses, we learnt many methods to solve the integral problems including change of variables method, integration by parts method, partial fractions method, trigonometric substitution method, and so on. In this paper, we study the following six types of integrals which are not easy to obtain their answers using the methods mentioned above.

\[\int \exp(px) \cdot \sin^{-1}[\beta \exp(qx)] dx \] (1)

\[\int \exp(px) \cdot \cos^{-1}[\beta \exp(qx)] dx \] (2)

\[\int \exp(px) \cdot \tan^{-1}[\beta \exp(qx)] dx \] (3)

\[\int \exp(px) \cdot \cot^{-1}[\beta \exp(qx)] dx \] (4)

\[\int \exp(px) \cdot \csc^{-1}[\beta \exp(qx)] dx \] (5)

\[\int \exp(px) \cdot \sec^{-1}[\beta \exp(qx)] dx \] (6)

Where \(p, q, \beta\) are real numbers? We can obtain the infinite series forms of these six types of integrals by using integration term by term theorem; these are the major results of this paper (i.e., Theorems 1-6). The study of related integral problems can refer to [8-22]. On the other hand, we provide some integrals to do calculation practically. The research methods adopted in this study involved finding solutions through manual calculations and verifying these solutions by using Maple. This type of research method not only allows the discovery of calculation errors, but also helps modify the original directions of thinking from manual and Maple calculations. For this reason, Maple provides insights and guidance regarding problem-solving methods.
2. Main Results

Firstly, we introduce some formulas used in this study.

2.1. Formulas ([23])

2.1.1. The Inverse Sine Function

\[
\sin^{-1} y = \sum_{n=0}^{\infty} \left(\frac{2n}{n} \right) y^{2n+1} \frac{1}{4^n (2n+1)} , \text{where } y \text{ is a real number, } |y| \leq 1 .
\]

2.1.2. The Inverse Cosine Function

\[
\cos^{-1} y = \frac{\pi}{2} - \sin^{-1} y , \text{where } y \text{ is a real number, } |y| \leq 1 .
\]

2.1.3. The Inverse Tangent Function

\[
\tan^{-1} y = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} y^{2n+1} , \text{where } y \text{ is a real number, } |y| \leq 1 .
\]

2.1.4. The Inverse Cotangent Function

\[
\cot^{-1} y = \frac{\pi}{2} - \tan^{-1} y , \text{where } y \text{ is a real number, } |y| \leq 1 .
\]

2.1.5. The Inverse Cosecant Function

\[
csc^{-1} y = \sum_{n=0}^{\infty} \frac{(2n)}{n} \frac{1}{4^n (2n+1)} y^{-1-(2n+1)} , \text{where } y \text{ is a real number, } |y| \geq 1 .
\]

2.1.6. The Inverse Secant Function

\[
\sec^{-1} y = \frac{\pi}{2} - \csc^{-1} y , \text{where } y \text{ is a real number, } |y| \geq 1 .
\]

Next, we introduce an important theorem used in this paper.

2.2. Integration Term by Term Theorem ([24])

Suppose \(\{g_n\}_{n=0}^{\infty} \) is a sequence of Lebesgue integrable functions defined on an interval \(I \). If \(\sum_{n=0}^{\infty} \int_I |g_n| \) is convergent, then \(\int_I \sum_{n=0}^{\infty} g_n = \sum_{n=0}^{\infty} \int_I g_n \).

The following is the first result of this study, we obtain the infinite series form of the integral (1).

2.3. Theorem 1

Suppose \(p, q, \beta \) are real numbers, \(q \neq 0 \), \(-\frac{q+p}{2q} \) is not a non-negative integer, and \(C \) is a constant. If \(|\beta| \exp qx \leq 1 \), then the integral
\[\int \exp(px) \cdot \sin^{-1} [\beta \exp(qx)] dx = \sum_{n=0}^{\infty} \frac{(2n)}{4^n (2n+1)(2q + p)} \exp((2nq + p)x] + C \quad (7) \]

2.3.1. Proof

\[\int \exp(px) \cdot \sin^{-1} [\beta \exp(qx)] dx \]

\[= \int \exp(px) \sum_{n=0}^{\infty} \frac{(2n)}{4^n (2n+1)} [\beta \exp(qx)]^{2n+1} dx \quad (By \ Formula \ 2.1.1) \]

\[= \int \sum_{n=0}^{\infty} \frac{(2n)}{4^n (2n+1)} \exp((2nq + p)x) dx \]

\[= \sum_{n=0}^{\infty} \frac{(2n)}{4^n (2n+1)} \int \exp((2nq + p)x) dx \quad (Using \ integration \ term \ by \ term \ theorem) \]

\[= \sum_{n=0}^{\infty} \frac{(2n)}{4^n (2n+1)(2nq + p)} \exp((2nq + p)x] + C \quad q.e.d. \]

Next, we determine the infinite series form of the integral (2).

2.4. Theorem 2

Let the assumptions be the same as Theorem 1. If \(|\beta| \exp qx \leq 1 \), then the integral

\[\int \exp(px) \cdot \cos^{-1} [\beta \exp(qx)] dx = \frac{\pi}{2p} \exp(px) - \sum_{n=0}^{\infty} \frac{(2n)}{4^n (2n+1)(2nq + p)} \exp((2nq + p)x] + C \quad (8) \]

2.4.1. Proof

Because \(|\beta| \exp qx \leq 1 \), the integral

\[\int \exp(px) \cdot \cos^{-1} [\beta \exp(qx)] dx \]

\[= \int \exp(px) \left(\frac{\pi}{2} - \sin^{-1} [\beta \exp(qx)] \right) dx \quad (Using \ Formula \ 2.1.2) \]

\[= \frac{\pi}{2} \int \exp(px) dx - \int \exp(px) \sin^{-1} [\beta \exp(qx)] dx \]

\[= \frac{\pi}{2p} \exp(px) - \sum_{n=0}^{\infty} \frac{(2n)}{4^n (2n+1)(2nq + p)} \exp((2nq + p)x] + C \quad (By \ Theorem \ 1) \]

q.e.d.
The following is the third major result in this study, we obtain the infinite series form of the integral (3).

2.5. Theorem 3

Suppose the assumptions are the same as Theorem 1. If \(|\beta| \exp qx \leq 1 \), then the integral

\[
\int \exp(px) \cdot \tan^{-1}[\beta \exp(qx)]dx = \sum_{n=0}^{\infty} \left(-\frac{1}{2n+1} \right)^n \beta^{2n+1} \frac{\exp[(2qn + q + p)x]}{(2n+1)(2qn + q + p)} + C \quad (9)
\]

2.5.1. Proof

Because \(|\beta| \exp qx \leq 1 \), the integral

\[
\int \exp(px) \cdot \tan^{-1}[\beta \exp(qx)]dx
\]

\[
= \int \exp(px) \sum_{n=0}^{\infty} \left(-\frac{1}{2n+1} \right)^n \beta^{2n+1} \frac{\exp((2qn + q + p)x)}{(2n+1)(2qn + q + p)} dx \quad \text{(Using Formula 2.1.3)}
\]

\[
= \sum_{n=0}^{\infty} \left(-\frac{1}{2n+1} \right)^n \beta^{2n+1} \frac{\exp((2qn + q + p)x)}{(2n+1)(2qn + q + p)} + C \quad \text{q.e.d.}
\]

Next, we find the infinite series form of the integral (4).

2.6. Theorem 4

Let the assumptions be the same as Theorem 1. If \(|\beta| \exp qx \leq 1 \), then the integral

\[
\int \exp(px) \cdot \cot^{-1}[\beta \exp(qx)]dx = \frac{\pi}{2p} \exp(px) - \sum_{n=0}^{\infty} \left(-\frac{1}{2n+1} \right)^n \beta^{2n+1} \frac{\exp((2qn + q + p)x)}{(2n+1)(2qn + q + p)} + C \quad (10)
\]

2.6.1. Proof

Because \(|\beta| \exp qx \leq 1 \), the integral

\[
\int \exp(px) \cdot \cot^{-1}[\beta \exp(qx)]dx
\]

\[
= \int \exp(px) \left(\frac{\pi}{2} - \tan^{-1}[\beta \exp(qx)] \right)dx \quad \text{(By Formula 2.1.4)}
\]

\[
= \frac{\pi}{2} \int \exp(px)dx - \int \exp(px) \tan^{-1}[\beta \exp(qx)]dx
\]

\[
= \frac{\pi}{2p} \exp(px) - \sum_{n=0}^{\infty} \left(-\frac{1}{2n+1} \right)^n \beta^{2n+1} \frac{\exp((2qn + q + p)x)}{(2n+1)(2qn + q + p)} + C \quad \text{(By Theorem 3)}
\]

q.e.d.

In the following, we obtain the infinite series form of the integral (5).
2.7. Theorem 5

Suppose \(p, q, \beta \) are real numbers, \(q, \beta \neq 0 \), \(-\frac{q-p}{2q} \) is not a non-negative integer, and \(C \) is a constant. If \(|\beta| \exp qx \geq 1 \), then the integral

\[
\int \exp(px) \cdot \csc^{-1}[\beta \exp(qx)] \, dx = \sum_{n=0}^{\infty} \frac{\binom{2n}{n}(2n+1)(-2qn-q+p)}{4^n} \exp([-2qn-q+p)x] + C \quad (11)
\]

2.7.1. Proof Because

\[
\int \exp(px) \cdot \csc^{-1}[\beta \exp(qx)] \, dx
\]

\[
= \int \exp(px) \sum_{n=0}^{\infty} \frac{\binom{2n}{n}(2n+1)(-2qn-q+p)}{4^n} \exp([-2qn-q+p)x] + C
\]

finally, we determine the infinite series form of the integral (6).

2.8. Theorem 6

Let the assumptions be the same as Theorem 5. If \(|\beta| \exp qx \geq 1 \), then the integral

\[
\int \exp(px) \cdot \sec^{-1}[\beta \exp(qx)] \, dx = \frac{\pi}{2p} \exp(px) - \sum_{n=0}^{\infty} \frac{\binom{2n}{n}(2n+1)(-2qn-q+p)}{4^n} \exp([-2qn-q+p)x] + C \quad (12)
\]

2.8.1. Proof Because

\[
\int \exp(px) \cdot \sec^{-1}[\beta \exp(qx)] \, dx
\]

\[
= \int \exp(px) \left(\frac{\pi}{2} - \csc^{-1}[\beta \exp(qx)] \right) \, dx \quad (By \ Formula \ 2.1.6)
\]

\[
= \frac{\pi}{2} \int \exp(px) \, dx - \int \exp(px) \csc^{-1}[\beta \exp(qx)] \, dx
\]

\[
= \frac{\pi}{2p} \exp(px) - \sum_{n=0}^{\infty} \frac{\binom{2n}{n}(2n+1)(-2qn-q+p)}{4^n} \exp([-2qn-q+p)x] + C \quad (By \ Theorem \ 5)
\]

q.e.d.
3. Examples

In the following, for the six types of integrals in this study, we provide some integrals and use our theorems to determine their infinite series forms. In addition, we evaluate some related definite integrals and employ Maple to calculate the approximations of these definite integrals and their solutions for verifying our answers.

3.1. Example 1

If \(\exp(3x) \leq \frac{1}{2} \), i.e., \(x \leq -\frac{1}{3} \ln 2 \equiv -0.231 \). By Theorem 1, we obtain the integral

\[
\int \exp(-4x) \sin^{-1}[2 \exp(3x)] \, dx = \sum_{n=0}^{\infty} -\frac{\left(2n\right)!}{2^n n! n!} \frac{2^{2n+1}}{4^n (2n+1)(6n-1)} \exp[(6n -1)x] + C (13)
\]

Therefore, we can evaluate the related definite integral from \(x = -2 \) to \(x = -1 \),

\[
\int_{-2}^{-1} \exp(-4x) \sin^{-1}[2 \exp(3x)] \, dx = \sum_{n=0}^{\infty} -\frac{\left(2n\right)!}{2^n n! n!} \frac{2^{2n+1}}{4^n (2n+1)(6n-1)} [\exp(-6n + 1) - \exp(-12n + 2)] (14)
\]

We use Maple to verify the correctness of (14).

\[
> \text{evalf(int(exp(-4*x)*arcsin(2*exp(3*x)),x=-2..-1),18));}
9.3433687809384508
\]

\[
> \text{evalf(sum((2*n)!/(n!*n!)*2^(2*n+1)/(4^n*(2*n+1)*(6*n-1))*(exp(-6*n+1)-exp(-12*n+2)),n=0..infinity),18));}
9.3433687809384508
\]

3.2. Example 2

If \(\exp(2x) \leq \frac{1}{4} \), i.e., \(x \leq -\frac{1}{2} \ln 4 \equiv -0.693 \). Using Theorem 4, we obtain the following integral

\[
\int \exp(6x) \cot^{-1}[-4 \exp(2x)] \, dx = \frac{\pi}{12} \exp(6x) - \sum_{n=0}^{\infty} -\frac{(-1)^n (-4)^{2n+1}}{(2n+1)(4n+8)} \exp[(4n + 8)x] + C (15)
\]

Thus, we can evaluate the related definite integral from \(x = -3 \) to \(x = -1 \),

\[
\int_{-3}^{-1} \exp(6x) \cot^{-1}[-4 \exp(2x)] \, dx = \frac{\pi}{12} [\exp(-6) - \exp(-18)] - \sum_{n=0}^{\infty} -\frac{(-1)^n (-4)^{2n+1}}{(2n+1)(4n+8)} [\exp(-4n - 8) - \exp(-12n - 24)] (16)
\]

We also use Maple to verify the correctness of (16).

\[
> \text{evalf(int(exp(6*x)*arccot(-4*exp(2*x)),x=-3..-1),14));}
0.00080697737112992
\]

\[
> \text{evalf(Pi/12*(exp(-6)-exp(-18))}-\text{sum((-1)^n*(-4)^n/(2*n+1)*(4*n+8))*(exp(-4*n-8)-exp(-12*n-24)),n=0..infinity),14));}
0.00080697737112992
\]
3.3. Example 3

If \(\exp(4x) \geq \frac{1}{5} \), i.e., \(x \geq -\frac{1}{4} \ln 5 \cong -0.402 \). By Theorem 6, the following integral

\[
\int \exp(3x) \sec^{-1}[5 \exp(4x)] \, dx = \frac{\pi}{6} \exp(3x) - \sum_{n=0}^{\infty} \left(\frac{2n}{n} \right) 5^{2n+1} \exp(-8n-1) x + C
\]

Hence, we can determine the related definite integral from \(x = 4 \) to \(x = 7 \),

\[
\int_{4}^{7} \exp(3x) \sec^{-1}[5 \exp(4x)] \, dx
\]

Using Maple to verify the correctness of (18) as follows:

\[
> \text{evalf}(ext{int}(\exp(3x) \cdot \text{arcsec}(5 \cdot \exp(4x)), x=4..7), 18);
\]

\[
6.90445085602191943 \cdot 10^8
\]

\[
> \text{evalf}(\pi/6*(\exp(21)-\exp(12))-\sum((2*n)!/(n!*n!)*5^{(-2*n-1)/(2*n+1)}*(-8*n-1))*\exp(-56*n-7)-\exp(-32*n-4)), n=0..\infty, 18);
\]

\[
6.90445085602191948 \cdot 10^8
\]

4. Conclusion

In this study, we provide a new technique to solve some types of integrals, and we hope this technique can be applied to evaluate another integral problem. On the other hand, we know the integration term by term theorem plays a significant role in the theoretical inferences of this study. In fact, the applications of this theorem are extensive, and can be used to easily solve many difficult problems; we endeavor to conduct further studies on related applications. In addition, Maple also plays a vital assistive role in problem-solving. In the future, we will extend the research topic to other calculus and engineering mathematics problems and solve these problems by using Maple. These results will be used as teaching materials for Maple on education and research to enhance the connotations of calculus and engineering mathematics.

REFERENCES

[23] Inverse trigonometric functions, online available from http://en.wikipedia.org/wiki/Inverse_trigonometric_functions