Certain Bilateral Generating Relations for a Class of Generalized Hypergeometric Functions of Two Variables

B. Satyanarayana\(^1\), N. Srimannarayana\(^2\), Y. Pragathi Kumar\(^1\)

\(^1\)Department of Mathematics, Acharya Nagarjuna University, Nagarjuna Nagar-522 510, Andhra Pradesh, India
\(^2\)Department of Science and Humanities, RISE Gandhi Group of Institutions, Ongole -523 272, Andhra Pradesh, India

*Corresponding Author: drbsn63@yahoo.co.in

Abstract

In [10] we defined and studied a class of generalized hypergeometric functions \(B_n^{(\alpha, \beta)}(x, y, w) \). In this paper an attempt has been made to obtain some bilateral generating relations with \(B_n^{(\alpha, \beta)}(x, y, w) \). Each result is followed by its applications to the classical orthogonal polynomials.

Keywords: Bilateral Generating Relations, Generalized Hypergeometric Functions, Classical Orthogonal Polynomials

1. Introduction

In the previous paper [10], we introduced a class of generalized hypergeometric functions \(B_n^{(\alpha, \beta)}(x, y, w) \) defined as follows:

\[
B_n^{(\alpha, \beta)}(x, y, w) = \frac{n!}{(n + \alpha + 1)!} \frac{\Gamma(n + \beta + 1)}{(n!)} x^n y^r [w^{r}] J_n^{(\alpha, \beta)}(x, y, w)
\]

where \(J_n^{(\alpha, \beta)}(x, y, w) \) is modified Jacobi polynomial (see Parihar and Patel [6] and also see Lahiri and Satyanarayana [3]-[5]). We also derived the following relation

\[
B_n^{(\alpha, \beta)}(x, y, w) = \frac{(1 + \alpha)_n (1 + \beta)_n}{n!} \times F_{-1; 1}^{1; 1}\left[\begin{array}{c}
n; \frac{-y}{w}; \frac{x}{w}; -w, w \\neg \neg; 1 + \beta; 1 + \alpha; \end{array}\right]
\]

Taking the limit \(w \to 0 \) in (1.1), we obtain

\[
\lim_{w \to 0} B_n^{(\alpha, \beta)}(x, y, w) = L_n^{(\alpha, \beta)}(x, y) \quad (1.3)
\]

where \(L_n^{(\alpha, \beta)}(x, y) \) is Laguerre polynomial of two variables [7].

In Satyanarayana [9] (also see [5, p.326(1.8)] defined generalized hypergeometric functions \(I_n^{(\alpha; \mu)}(a_r) \) and also proved that [9, p.65(3.3.3)]

\[
\sum_{n=0}^{\infty} \left(\begin{array}{c}
r + \rho + \mu \\alpha \\beta \end{array}\right) \frac{(\rho + r)_n}{(1 + \alpha + r)_n} \frac{\alpha; \mu; (a_r)}{n + r; \beta; (b_r)}(x, w) t^n
\]

where \(\mu = 1 \) and \(\mu = 1 \) we have

\[
\lim_{w \to 0} I_n^{(\alpha; \mu)}(a_r)(x, w) = e^{-x} L_n^{(\alpha)}(x) \quad (1.6)
\]

where \(L_n^{(\alpha)}(x) \) is Laguerre polynomial [8].

The following definitions and results given by Rainville [8]
Certain Bilateral Generating Relations for a Class of Generalized Hypergeometric Functions of Two Variables

p.302] Gottlieb polynomial
\[\phi_n(x; \lambda) = e^{-n \lambda} F_1(-n, -x; 1; 1 - e^{\lambda}), \quad (1.7) \]

Generalized Sylvester polynomial
\[f_n(x; a) = \left(\frac{ax}{n!}\right)^n 2F_0(-n, x; -; -1) \]

Agrawal and Manocha [1, p.1372 (2.2)(5.5)]
\[\sum_{n=0}^{\infty} \binom{n+k}{k} \phi_{n+k}(x; \lambda) t^n = (1-t)^{-k} \times \]
\[(1-te^{-\lambda})^{-x-1} \phi_k(x; \log_e \left(\frac{e^{\lambda} - t}{1-t} \right)) \]

and
\[\sum_{n=0}^{\infty} \binom{n+k}{k} f_{n+k}(x; a) t^n = (1-t)^{-x-k} \times \]
\[e^{ax} f_k(x; a(1-t)) \]

2. Main Results

Bilateral generating relations
We have derived the following bilateral generating relations for the class of generalized hypergeometric functions \(B_{n}(\alpha, \beta)(x, y, v) \):

\[\sum_{n=0}^{\infty} \binom{n}{k} \phi_{n+k}(x; \lambda) t^n = (1-t)^{-k} \times \]
\[(1-te^{-\lambda})^{-x-1} \phi_k(x; \log_e \left(\frac{e^{\lambda} - t}{1-t} \right)) \]

and
\[\sum_{n=0}^{\infty} \binom{n+k}{k} f_{n+k}(x; a) t^n = (1-t)^{-x-k} \times \]
\[e^{ax} f_k(x; a(1-t)) \]

2. Main Results

Bilateral generating relations
We have derived the following bilateral generating relations for the class of generalized hypergeometric functions \(B_{n}(\alpha, \beta)(x, y, v) \):

\[\sum_{n=0}^{\infty} \binom{n}{k} \phi_{n+k}(x; \lambda) t^n = (1-t)^{-k} \times \]
\[(1-te^{-\lambda})^{-x-1} \phi_k(x; \log_e \left(\frac{e^{\lambda} - t}{1-t} \right)) \]

and
\[\sum_{n=0}^{\infty} \binom{n+k}{k} f_{n+k}(x; a) t^n = (1-t)^{-x-k} \times \]
\[e^{ax} f_k(x; a(1-t)) \]

2. Main Results

Bilateral generating relations
We have derived the following bilateral generating relations for the class of generalized hypergeometric functions \(B_{n}(\alpha, \beta)(x, y, v) \):

\[\sum_{n=0}^{\infty} \binom{n}{k} \phi_{n+k}(x; \lambda) t^n = (1-t)^{-k} \times \]
\[(1-te^{-\lambda})^{-x-1} \phi_k(x; \log_e \left(\frac{e^{\lambda} - t}{1-t} \right)) \]

and
\[\sum_{n=0}^{\infty} \binom{n+k}{k} f_{n+k}(x; a) t^n = (1-t)^{-x-k} \times \]
\[e^{ax} f_k(x; a(1-t)) \]

Proof of (2.1). From (2.1), we have
\[t_1 = \frac{v(e^{\lambda} - 1)t}{(e^{\lambda} - t)(1-t)}, \quad t_2 = \frac{vt}{e^{\lambda} - t} \]
\[t_3 = \frac{v^2(e^{\lambda} - 1)t}{(e^{\lambda} - 1)(1-t)}. \]

\[\sum_{n=0}^{\infty} \binom{n}{k} \phi_{n+k}(x; \lambda) t^n = (1-t)^{-k} \times \]
\[(1-te^{-\lambda})^{-x-1} \phi_k(x; \log_e \left(\frac{e^{\lambda} - t}{1-t} \right)) \]

and
\[\sum_{n=0}^{\infty} \binom{n+k}{k} f_{n+k}(x; a) t^n = (1-t)^{-x-k} \times \]
\[e^{ax} f_k(x; a(1-t)) \]

Proof of (2.1). From (2.1), we have
\[t_1 = \frac{v(e^{\lambda} - 1)t}{(e^{\lambda} - t)(1-t)}, \quad t_2 = \frac{vt}{e^{\lambda} - t} \]
\[t_3 = \frac{v^2(e^{\lambda} - 1)t}{(e^{\lambda} - 1)(1-t)}. \]

\[\sum_{n=0}^{\infty} \binom{n}{k} \phi_{n+k}(x; \lambda) t^n = (1-t)^{-k} \times \]
\[(1-te^{-\lambda})^{-x-1} \phi_k(x; \log_e \left(\frac{e^{\lambda} - t}{1-t} \right)) \]

and
\[\sum_{n=0}^{\infty} \binom{n+k}{k} f_{n+k}(x; a) t^n = (1-t)^{-x-k} \times \]
\[e^{ax} f_k(x; a(1-t)) \]
\[
\sum_{n=0}^{\infty} \sum_{s=0}^{n-r} \frac{(-n)_{r+s}}{(1+\alpha)_n (1+\alpha)_s (1+\beta)_r} \rho^n \left(-\frac{y}{v} \right)_{r+s} \frac{x}{v_s} \frac{(-v)^r}{r!} I^\alpha_n(x,w) t^n
\]

\[
= \sum_{s=0}^{\infty} \sum_{r=0}^{n} \frac{(-n)_s}{(1+\alpha)_s (1+\alpha+r)_r} \frac{x}{v_s} \frac{(-v)^r}{r!} \frac{v^s}{s!} I^\alpha_n(x,w) t^n
\]

\[
= \frac{\sum_{n=0}^{\infty} (-n)_s \frac{(-v)^r}{r!} I^\alpha_n(x,w) t^n}{(1+\alpha)_s (1+\alpha+r)_r}
\]

By using (1.4), we get

\[
= \sum_{s=0}^{\infty} \sum_{r=0}^{n} \frac{(-n)_s}{(1+\alpha)_s (1+\alpha+r)_r} \frac{x}{v_s} \frac{(-v)^r}{r!} \frac{v^s}{s!} I^\alpha_n(x,w) t^n
\]

\[
= \frac{\sum_{n=0}^{\infty} (-n)_s \frac{(-v)^r}{r!} I^\alpha_n(x,w) t^n}{(1+\alpha)_s (1+\alpha+r)_r}
\]

Hence complete the proof of (2.1).

Applications.

(i) By setting \(p = q, \ a_j = b_j, j = 1, 2, ..., \ p, \mu = 1 \) and \(\lambda = 0 \) in (2.1), we get

\[
\sum_{n=0}^{\infty} \frac{(\rho)_n(n!)^2}{(1+\alpha)_n^2 (1+\beta)_n} B^\alpha(x,y) I^\alpha_n(x,w) t^n = (1-t)^{-\rho} \times
\]

\[
\left[\begin{array}{c}
[\rho : 1,1,1,1],[\frac{x}{w} - \mu + 1 : 1,1,0,1,] : \\
[1+\alpha : 1,1,0,0,1],[\rho : 0,1,0,1,1,] : \\
-;\ -;\ -\frac{x}{w} + \lambda; \rho,-\frac{y}{v}; \frac{x}{v},
\end{array} \right]
\]

(ii) Applying \(p = q, \ a_j = b_j, j = 1, 2, ..., \ p \) and writing \(w \to 0 \) in (2.1), we get

\[
\sum_{n=0}^{\infty} \frac{(\rho)_n(n!)^2}{(1+\alpha)_n^2 (1+\beta)_n} F^\alpha_{p:0;0;2;1} \left[\begin{array}{c}
[\rho : 1,1,1,1],[\frac{x}{w} : 1,1,0,1,] : \\
[1+\alpha : 1,1,0,1,1],[\rho : 0,1,1,1,1,] : \\
-;\ -;\ -\frac{x}{w} + \lambda; \rho,-\frac{y}{v}; \frac{x}{v},
\end{array} \right]
\]

(iii) On taking \(v \to 0 \) in (2.1), we get

\[
\sum_{n=0}^{\infty} \frac{(\rho)_n(n!)^2}{(1+\alpha)_n^2 (1+\beta)_n} F^\alpha_{p:0;0;2;1} \left[\begin{array}{c}
[\rho : 1,1,1,1],[\frac{x}{w} : 1,1,0,1,] : \\
[1+\alpha : 1,1,0,1,1],[\rho : 0,1,1,1,1,] : \\
-;\ -;\ -\frac{x}{w} + \lambda; \rho,-\frac{y}{v}; \frac{x}{v},
\end{array} \right]
\]
Certain Bilateral Generating Relations for a Class of Generalized Hypergeometric Functions of Two Variables

\[(1-t)^{-\rho} F_{q+2;0;0;1;1}^{1;1,1,0,1} \left[(a_p) : 1,1,1,0,1, \right. \]
\[(b_q) : 1,1,1,0,1, \] \[, \]
\[[\rho : 1,1,0,1,1] , [\frac{x}{w} - \mu + 1 : 1,1,0,1,0,1] : \]
\[[1 + \alpha : 1,1,1,0,1,1] , [\rho : 0,1,1,0,1,1] : \]
\[\left[\begin{array}{c}
-\frac{x}{w} + \lambda ; \rho ; - \frac{t}{w} w, \frac{y t}{1-t}, w x
\end{array} \right] \] \tag{2.6}

(iv) By writing \(\mu = 1, \lambda = 0 \), \(p = q \) and \(j j a = b j, j = 1, 2, \ldots, p \) and letting \(v \to 0 \), in (2.1), we have (2.6)
\[
\sum_{n=0}^{\infty} \frac{(\rho)_n n!^2}{(1+\alpha)_n^2 (1+\beta)_n} t_n^{(x,y)} f_n(x,y) t^n
\]
\[= (1-t)^{-\rho} F_{2;0;0;1;1}^{1;1,1,1,1,1} \left[\frac{x}{w} : 1,1,1,0,1,0,1,1, \right. \]
\[[1+\alpha : 1,1,1,0,1,1,1,] : \]
\[\left[\begin{array}{c}
-\frac{x}{w} + \lambda ; \rho ; - \frac{t}{w} w, \frac{y t}{1-t}, w x
\end{array} \right] \] \tag{2.7}

(v) Taking \(v \to 0, w \to 0, p = q \) and \(a_j = b_j, j = 1, 2, \ldots, p \) in (2.1), we get
\[
\sum_{n=0}^{\infty} \frac{(\rho)_n n!^2}{(1+\alpha)_n^2} t_n^{(x,y)} f_n(x,y) t^n
\]
\[= (1-t)^{-\rho} F_{2;0;0;1;1}^{1;1,1,1,1,1} \left[\frac{x}{w} : 1,1,1,0,1,0,1,1, \right. \]
\[[1+\alpha : 1,1,1,0,1,1,1,] : \]
\[\left[\begin{array}{c}
-\frac{x}{w} + \lambda ; \rho ; - \frac{t}{w} w, \frac{y t}{1-t}, w x
\end{array} \right] \] \tag{2.8}

These are all the bilateral (bilinear) generating relations for the class of generalized hypergeometric functions (1.1), whereas the results for the modified Jacobi polynomial, Laguerre polynomial of two variables and Laguerre polynomial are believed to be new.

Proof of (2.2). The result (2.2) can also be deduced by using (1.9) and the same techniques as followed in the previous result.

(i) By letting limit \(v \to 0 \) in (2.2), we obtain
\[
\sum_{n=0}^{\infty} \frac{(n!)^2}{(1+\alpha)_n (1+\beta)_n} t_n^{(x,y)} f_n(x,y) t^n
\]
\[= (1-t)^x (1-e^{-\lambda})^{-x-1} F_{2;0;0;1;1}^{1;1,1,1,1,1} \left[\frac{x}{w} : 1,1,1,0,1,0,1,1, \right. \]
\[[1+\beta : 1,1,1,1,1,] : \]
\[\left[\begin{array}{c}
-\frac{x}{w} + \lambda ; \rho ; - \frac{t}{w} w, \frac{y t}{1-t}, w x
\end{array} \right] \] \tag{2.9}

where
\[
t_1 = \frac{y(e^{\lambda} - 1)t}{(e^{\lambda} - t)(1-t)}, \quad t_2 = \frac{-yt}{e^{\lambda} - t}, \quad t_3 = \frac{y(x(e^{\lambda} - 1)t}{(e^{\lambda} - 1)(1-t)}
\]
is the bilateral generating relation for the Laguerre polynomial of two variables, which is believed to be new.

Proof of (2.3). The result (2.3) can also be deduced by using (1.10) and the same techniques as followed in the result (2.1).

Application. Applying limit \(v \to 0 \) on (2.3), we obtain
\[
\sum_{n=0}^{\infty} \frac{(n!)^2}{(1+\alpha)_n (1+\beta)_n} t_n^{(x,y)} f_n(x,y) t^n
\]
\[= (1-t)^x (1-e^{-\lambda})^{-x-1} F_{1;0;0;1;1}^{1;1,1,1,1,1} \left[\frac{x}{w} : 1,1,1,0,1,0, \right. \]
\[[1+\beta : 1,1,1,1,1,] : \]
\[\left[\begin{array}{c}
-\frac{x}{w} + \lambda ; \rho ; - \frac{t}{w} w, \frac{y t}{1-t}, w x
\end{array} \right] \] \tag{2.10}

is the bilateral generating relation for the Laguerre polynomial of two variables, which is believed to be new.
3. Conclusion

By employing the technique used in the proof of (2.1) and adjusting the parameters one can easily get the bilateral generating relations.

Acknowledgements

The authors are thankful to the referee for giving some useful suggestions to improve this paper.

REFERENCES

