On Cyclicity and Regularity of Commuting Matrices

Boris Shekhtman

Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620, United States

*Corresponding Author: shekhtma@usf.edu

Abstract It is well-known that the following properties of a matrix are equivalent: a matrix is non-derogatory if and only if is cyclic if and only if it is simple and if and only if if it is 1-regular. In this article we attempt to extend these properties to a sequence of commuting matrices and examine the relation between them.

Keywords Commuting matrices, cyclicity, regularity, simplicity, non-derogatory sequences

1 Introduction

Sequences of commuting matrices play an important role in linear algebra (e.g. [9]) as well as its applications to numerical analysis (cf. [1, 19, 18]), algebra (cf. [5]), algebraic geometry (cf. [3, 12, 13]) and approximation theory (cf. [4, 14, 16]). The study of the irreducibility of the variety of commuting couples and triples of matrices was initiated by Motzkin and Taussky [11] and continued in [6], [7] and [8], among others. In this article we will extend some well-known properties of matrices to sequences of commuting matrices and examine their relations to each other.

Our starting point is the following standard fact from linear algebra (cf. [9])

For an $n \times n$ matrix L with complex entries, the following four conditions are equivalent:

R) L is regular, i.e., every eigenspace of L is at most one-dimensional.

C) L is cyclic, i.e., there exists a (cyclic) vector $v \in \mathbb{C}^n$ such that

$$\text{span}\{v, Lv, \ldots, L^{n-1}v\} = \mathbb{C}^n.$$

S) L is simple, i.e., if T commutes with L then $T = p(L)$ for some polynomial p.

D) L is non-derogatory, i.e., the characteristic polynomial of L is its minimal polynomial.

To what extent these equivalences extend to a sequences of commuting matrices? In this article we will examine the relationship between the four equivalent conditions for d-tuple of commuting matrices.

Here are some preliminaries: In what follows, $L(\mathbb{C}^n)$ will stand for the algebra of linear operators on \mathbb{C}^n or, equivalently, for the algebra of complex $n \times n$ matrices. $\mathbb{C}[x] := \mathbb{C}[x_1, \ldots, x_d]$ will denote the algebra of polynomials of d variables with complex coefficients. For a subset $F \subset \mathbb{C}^n$ we let $[F]$ stand for the linear span of F.

Let $L := (L_1, \ldots, L_d)$ be a sequence of pairwise commuting $n \times n$ matrices with complex entries. A d-tuple $\lambda := (\lambda_1, \ldots, \lambda_d) \in \mathbb{C}^n$ is called an eigentuple for L if there exists a non-zero vector $v \in \mathbb{C}^n$ such that $L_j v = \lambda_j v$ for all $j = 1, \ldots, d$. Any such vector v is called an eigenvector for L corresponding to an eigentuple λ. The set of all eigentuples for L is called the (joint) spectrum of L and denoted by $\sigma(L)$. It is well-known and easy to see that $\sigma(L) \neq \emptyset$ for any such L.

For $\lambda \in \sigma(L)$ the linear space

$$V_\lambda := \{v \in \mathbb{C}^n : L_j v = \lambda_j v, j = 1, \ldots, d\} \subset \mathbb{C}^n$$

is called an eigenspace for L. A subspace $V \subset \mathbb{C}^n$ is L-invariant if $L_j V \subset V$ for all $j = 1, \ldots, d$. If $L := (L_1, \ldots, L_d)$ we use L^* to denote the sequence of adjoint matrices (L_1^*, \ldots, L_d^*). For $\lambda = (\lambda_1, \ldots, \lambda_d) \in \sigma(L)$ we use $L_\lambda := (L_j - \lambda_j I, j = 1, \ldots, d)$. Finally we use J_L to denote the ideal of polynomials in $\mathbb{C}[x]$ that annihilate L:

$$J_L := \{p \in \mathbb{C}[x] : p(L) = 0\}.$$

The following useful proposition is a part of the folklore:

Proposition 1.1. Let U be an L^*-invariant subspace of \mathbb{C}^n. Then U^\perp is an L-invariant subspace of \mathbb{C}^n.

Proof. For $v \in U^\perp$ and any $u \in U$ we have

$$\langle L_j v, u \rangle = \langle v, L_j^* u \rangle = 0$$

since $L_j^* u \in U$ by our assumption. Hence $L_j v \in U^\perp$. \square

Definition 1.2. A d-tuple $L := (L_1, \ldots, L_d)$ of pairwise commuting $n \times n$ is called cyclic if there exists a (cyclic) vector $v \in \mathbb{C}^n$ such that $\{p(L)v : p \in \mathbb{C}[x]\} = \mathbb{C}^n$.

Copyright ©2013 Horizon Research Publishing All rights reserved.
2 Cyclicity vs. regularity

We start with a simple example (already used in [4], [10]) that shows that the equivalence of cyclicity and regularity fails for pairs of commuting matrices in both directions:

Example 2.1. First consider \(L = (L_1, L_2) \) on \(\mathbb{C}^3 \) given by

\[
L_1 = \begin{bmatrix}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}, \quad L_2 = \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{bmatrix}.
\] (2.1)

This is a cyclic commuting pair with the cyclic vector \((1, 0, 0)\), yet \(\sigma(L) = \{(0, 0)\} \) and vectors \((0, 1, 0)\) and \((0, 0, 1)\) are common eigenvectors for \(L \). On the other hand \(L' = (L'_1, L'_2) = (L_1, L_2) = L^* \) given by

\[
L'_1 = \begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}, \quad L'_2 = \begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\] (2.2)

is not cyclic (the range of each matrix is the same one-dimensional subspace spanned by \((1, 0, 0)\)), yet the only common eigenspace is one-dimensional, spanned by the vector \(v = (1, 0, 0) \).

It took me a while to learn the lesson of this example: The cyclicity of a \(d \)-tuple of commuting matrices is related to the dimensions of the eigenspaces of the adjoint \(d \)-tuple rather than the matrices themselves. (Of course for one matrix it is a mute point.)

Theorem 2.2. A \(d \)-tuple \(L := (L_1, \ldots, L_d) \) of commuting \(N \times N \) matrices is cyclic iff the dimension of each eigenspace of \(L^* := (L_1^*, \ldots, L_d^*) \) is at most one. In this case the sum of eigenvectors corresponding to distinct eigenvalues of \(L^* \) is a cyclic vector for \(L \).

Theorem 2.2 is an immediate corollary of more general Theorem 2.4 which requires a definition:

Definition 2.3. For a \(d \)-tuple \(L := (L_1, \ldots, L_d) \) of commuting matrices a cyclicity \(\text{cyc}(L) \) is the least integer \(n \) such that there exist \(n \) vectors \(w_1, \ldots, w_n \) with

\[
+_{n=1}^d \{ p(L)w_n : p \in \mathbb{C}[x] \} = \mathbb{C}^n.
\]

If \(\text{cyc}(L) = n \), we will say that \(L \) is \(n \)-cyclic. Thus cyclic \(d \)-tuples are 1-cyclic.

Theorem 2.4. Let \(L := (L_1, \ldots, L_d) \) be a sequence of commuting \(n \times n \) matrices. Then the cyclicity \(\text{cyc}(L) \) is equal to the maximal dimension of eigenspaces of \(L^* \).

Proof. Let \(\{v_1, \ldots, v_s\} \) be the cyclic set for \(s \)-cyclic sequence \(L \) and let \(u_1, \ldots, u_s, u_{s+1} \) be linearly independent eigenvectors that belong to the same eigenspace of \(L^* \). Then there exists a linear combination \(u = \sum_{j=1}^{s+1} \alpha_j u_j \) orthogonal to \(v_1, \ldots, v_s \) (more equations than the unknowns) and \(|h|^2 \) is a proper \(L \)-invariant subspace containing \(v_1, \ldots, v_s \). Contradiction.

Conversely, suppose that \(U_1, \ldots, U_m \) are the eigenspaces of \(L^* \) that correspond to distinct eigenvalues \(\lambda_1, \ldots, \lambda_m \). Let \(s := \max \{ \dim U_j, j = 1, \ldots, m \} \). We will exhibit a set of vectors \(\{w_1, \ldots, w_s\} \) which is a cyclic set for \(L \). For each \(j = 1, \ldots, m \) let \((u_{1,j}, \ldots, u_{s,j}) \) be vectors in \(U_j \) such that \((u_{1,j}, \ldots, u_{s,j}) \) are linearly independent if \(k \leq \dim H_j \) and \(u_k,j = 0 \) if \(k > \dim U_j \). Now for \(n = 1, \ldots, s \) we form vectors

\[
w_n := \sum_{j=1}^s u_{n,j}.
\]

We claim that these vectors form a cyclic set for \(L \). Otherwise the space

\[
W := +_{n=1}^s \{ p(L)w_n : p \in \mathbb{C}[x] \}
\]

is a proper \(L \)-invariant subspace of \(\mathbb{C}^n \) hence \(W^\perp \) contains an eigenvector corresponding to some eigenvalue, say \(\lambda_1 \), for \(L \). Let \(p \in \mathbb{C}[x] \) be such that \(p(\lambda_1) = \delta_{1,j} \), for all \(j = 1, \ldots, m \). We have \(p(L^*)w_n = u_{n,1} \); thus \(W \) contains \(U_1 \) and cannot contain an eigenvector from \(U_1 \) orthogonal to it.

Remark 2.5. The second statement in Theorem 2.2 follows directly from the construction of the vectors \(w_n \).

Next, I wish to examine the role that the quadratic polynomials in \(L^* \) play in the cyclicity structure of \(L \).

Since a nilpotent operator is not invertible, its rank is less then the dimension of the space. If \(L_1 \) and \(0 \neq L_2 \) are two commuting nilpotent operators the range of \(L_2 \) is \(L_1 \)-invariant and \(L_1 \mid _{\text{ran}L_2} \) is still nilpotent; hence the rank \(L_1 L_2 \text{rk} L_2 \) and

\[
\text{dim ker} L_1 L_2 > \text{dim ker} L_2.
\]

In particular for any nilpotent matrix \(L \neq 0 \),

\[
\text{dim ker} L^2 > \text{dim ker} L. \quad (2.3)
\]

Similar result holds for the kernel of sequences of commuting nilpotent matrices; we just need to define the powers of \(L \):

Definition 2.6. Let \(L := (L_1, \ldots, L_d) \) be a sequence of commuting matrices. We define

\[
H_m(L) = \{ p(L) : p \text{ monomials of degree } m \}.
\]

Thus, for instance,

\[
H_2(L_1, L_2) = \{ L_1^2, L_1 L_2, L_2^2 \}.
\]

Also notice that (ordering monomials of degree \(m \)) \(H_m(L) \) is a sequence of commuting matrices.

Lemma 2.7. Let \(0 \neq L \) be a \(d \)-tuple of commuting nilpotent matrices. Then

\[
\text{dim ker} H_2(L) > \text{dim ker} L.
\]

Proof. Since \(\ker L \subset \ker L_1 \) and by (2.3) above,

\[
\text{dim ker} L^2 > \text{dim ker} L_1 \geq \text{dim ker} L.
\]

Assume that \(k \) is the maximum number of quadratic monomials \(p_1, \ldots, p_k \) such that

\[
\text{dim ker} (p_j(L), j = 1, \ldots, k) > \text{dim ker} L.
\]
Let \(V := \ker (p_j(L), j = 1, \ldots, k) \).

Suppose that a monomial \(L_1 L_m \) is missing from that list. Then \(V \) is invariant for \(L_m \) as well as \(L_i L_m \) and \(\dim \ker (L_i L_m | V) > \dim \ker (L_m | V) \geq \dim \ker L \) since \(\ker L \subset V \). Hence

\[
\dim \ker (L_i L_m, p_j (L), j = 1, \ldots, k) > \dim \ker L.
\]

and thus \(p_1, \ldots, p_k \) are all monomials of degree 2.

The last lemma has an obvious generalization:

Proposition 2.8. Let \(L \) be a \(d \)-tuple of commuting nilpotent matrices. If for some \(m \geq 1 \) the set \(H_m (L) \neq \{0\} \) then

\[
\dim \ker H_{m+1} (L) > \dim \ker H_m (L).
\]

Lemma 2.7 has an interesting corollary:

For a matrix \(L \) define

\[
\sqrt{L} := \{ A : A^2 = L \}.
\]

Corollary 2.9. For commuting matrices (2.2) from Example 2.1, the sets \(\{L_1, \sqrt{L_2^2} \} \) are not empty yet for any \(A_i \in \sqrt{L_i} \), \(A_1 \) and \(A_2 \) do not commute.

Proof. It is easy to verify that

\[
\begin{pmatrix}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix} \in \sqrt{L_1}, \quad \begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix} \in \sqrt{L_2}
\]

hence \(\sqrt{L_1}, \sqrt{L_2} \) are not empty.

If there exist commuting \(A_i \in \sqrt{L_i} \) then \(\ker (A_1^2, A_2^2) = \ker (L_1, L_2) \) would be at least two dimensional, which is false.

Here are another couple of corollaries of the lemma:

Corollary 2.10. If \(0 \neq L := (L_1, \ldots, L_d) \) is a \(d \)-tuple of commuting matrices then for every \(\lambda := (\lambda_1, \ldots, \lambda_d) \in \sigma (L') \)

\[
\dim \ker ((L_i - \lambda_i I) (L_j - \lambda_j I), i, j = 1, \ldots, d) \geq \dim V_{\lambda}.
\]

Proof. The proof follows from Lemma 2.7 and block-diagonalization of commuting matrices [10].

Corollary 2.11.

(i) \(L \) is simultaneously diagonalizable iff

\[
\dim \ker (L_{\lambda}, i = 1, \ldots, d) = \dim \ker (H_2 (L_{\lambda}), i = 1, \ldots, d).
\]

(ii) A \(d \)-tuple of commuting matrices has \(N \) distinct eigentuples iff

\[
\dim \ker ((L_i - \lambda_i I)^2, i = 1, \ldots, d) = 1
\]

for every \(\lambda := (\lambda_1, \ldots, \lambda_d) \in \sigma (L') \).

Next we want to address the situation when \(\dim \ker H_2 (L') = 2 \). It follows from the Jordan form that one matrix \(L \) is cyclic if and only if

\[
\dim \ker L^2 = \dim \ker (L')^2 = 2. \quad (2.4)
\]

Theorem 2.12. Let \(N \geq 2 \) and \(0 \neq L \). Then \(\mathcal{A}(L) \) contains a cyclic matrix iff

\[
\dim \ker H_2 (L'_A) = 2
\]

for every \(\lambda \in \sigma (L') \).

Proof. It suffices to examine the nilpotent case. If \(L \in \mathcal{A}(L) \) is nilpotent and cyclic then, as follows from the Jordan form of \(L \), \(\dim \ker L^2 = \dim \ker (L')^2 = 2 \). This combined with Lemma 2.7 gives \(\dim \ker H_2 (L') = 2 \).

For the converse, let \(\dim \ker H_2 (L') = 2 \) then \(\dim \ker H_2 (L') = 1 \) and \(L \) is cyclic. I claim that for \(d \) commuting nilpotent matrices

\[
A = (A_1, \ldots, A_d) \quad (2.5)
\]

with \(\ker A = [v_0] \) and \(\dim \ker H_2 (A) = 2 \) at least one of \(A_1 \) is 1-regular. The proof is by induction on \(d \). For \(d = 1 \) the result follows from (2.3). Assume that it is true for \(d - 1 \) and that (2.5) has no cyclic matrices. Then, by inductive assumption, there exist \(u \in \ker (A_2, \ldots, A_d), \) \(u \notin [v_0] \) and \(w \in \ker (A_1, A_2, \ldots, A_{d-1}), w \notin [v_0] \). Let \(k \) and \(m \) be the least integers such that \(A_1^k u = 0 \) and \(A_d^m w = 0 \). I claim that

a) \(0 \neq A_1^{k-1} u = A_d^{m-1} w \in [v_0] \)

b) Vectors \(v_0, A_1^{k-2} u, A_d^{m-2} w \) are linearly independent.

c) \(v_0, A_1^{k-2} u, A_d^{m-2} w \in \ker H_2 (A) \)

The last two statements contradict \(\dim \ker H_2 (A) = 2 \).

To prove a) we have

\[
A_1^{k-1} u \in \ker A_1 \cap \ker (A_2, \ldots, A_d) = \ker A.
\]

To prove b) assume that for some constants \(\alpha, \beta \) and \(\gamma \)

\[
\alpha v_0 + \beta A_1^{k-2} u + \gamma A_d^{m-2} w = 0.
\]

Then

\[
0 = \alpha A_1 v_0 + \beta A_1^{k-1} u + \gamma A_1 A_d^{m-2} w = \beta v_0
\]

hence \(\beta = 0 \). The argument for \(\gamma \) is the same. Finally c) follows from definitions of \(u, w, k \) and \(m \).

3 Cyclic vs. simple and non-derogatory

We start with a definition of a non-derogatory sequence of commuting matrices. Since the characteristic polynomial of an \(n \times n \) matrix \(L \) is of degree \(n \) hence an equivalent definition of a non-derogatory matrix (cf. D) in the introduction) is \(\dim \mathbb{C}[x]/J_L = n \). Thus the following seem to make sense:

Definition 3.1. A \(d \)-tuple \(L := (L_1, \ldots, L_d) \) of commuting \(n \times n \) matrices is non-derogatory if \(\dim (\mathbb{C}[x]/J_L) = n \).

The definition of simplicity is straight forward:

Definition 3.2. A \(d \)-tuple \(L := (L_1, \ldots, L_d) \) of commuting \(n \times n \) matrices is simple if every \(T \) that commutes with each \(L_j \) is a polynomial in \(L \).
Proposition 3.3. Let $L := (L_1, \ldots, L_d)$ be a d-tuple of commuting $N \times N$ matrices. Then, if L is cyclic it is simple and non-derogatory. Conversely, this is not true.

Proof. Let T commutes with every L_j and let v be a cyclic vector for L. Then there exists a polynomial $q \in \mathbb{C}[x]$ such that $q(L)v = T v$. Also for every vector $u \in \mathbb{C}^n$ there exists a polynomial $p_u \in \mathbb{C}[x]$ such that $p_u(L)v = u$. We have

$$Tu = Tp_u(L)v = p_u(L)Tv = p_u(L)q(L)v = q(L)p_u(L)v = q(L)u$$

hence $T = q(L)$.

To prove that a cyclic sequence is non-derogatory we let, once again, v be a cyclic vector for L and define a mapping

$$\varphi : \mathbb{C}[x] \to \mathbb{C}^n$$

$$f \to f(L)v$$

Since L is cyclic, φ is onto and by the fundamental theorem of homomorphisms $k[x]/\ker \varphi$ is isomorphic to \mathbb{C}^n hence $\dim \ker \varphi = n$. It remains to show that $\ker \varphi = J_L$. Clearly if $f(L) = 0$ then $f(L)v = 0$. Now assume that $f \in \ker \varphi$, i.e., $f(L)v = 0$. Since for every $u \in \mathbb{C}$ there exists a polynomial $p_u \in \mathbb{C}[x]$ such that $p_u(L)v = u$ we have

$$f(L)u = f(L)p_u(L)v = p_u(L)f(L)v = 0$$

and $f \in J_L$.

To show that the converse fails, we, once more, consider the matrices L^* from Example 2.1. Since L is cyclic $\dim(\mathbb{C}[x,J_L]) = 3$ but $J_L = J_L^*$ hence L^* is non-derogatory yet not cyclic. Similarly, if T commutes with L_1^* and L_2^* then T^* commutes with L_1 and L_2 and, since (L_1, L_2) is cyclic, it follows that there exists a polynomial q such that $T^* = q(L_1, L_2)$. Hence $T = q(L_1^*, L_2^*)$. Is simple yet non-derogatory.

4 Simple vs. non-derogatory

In this section we will that neither one of the two conditions implies the other.

First we will show that there exists a simple sequence of commuting matrices which is derogatory. In fact we will construct a simple sequence L such that $\dim(\mathbb{C}[x,J_L]) < n$ and a simple sequence L such that $\dim(\mathbb{C}[x,J_L]) > n$.

For the first construction, recall Courter’s example ([2], cf. also [17]) of a commutative subalgebra $A \subset L(\mathbb{C}^{14})$ of dimension 13 which is maximal, i.e., such every matrix that commutes matrices in is in A. Let $L := (L_1, \ldots, L_{13})$ be a basis in A. Then, by maximality, every matrix that commutes with matrices in L is a (linear homogeneous) polynomial of L. Hence L is simple. On the other hand

$$\dim(\mathbb{C}[x_1, \ldots, x_{13}]/J_L) = \dim A = 13 < 14.$$ \hspace{1cm} (4.1)

To see this, consider the 13-dimensional space $H \subset \mathbb{C}[x_1, \ldots, x_{13}]$ of linear homogeneous polynomial. On the other hand for every polynomial $p \in \mathbb{C}[x_1, \ldots, x_{13}]$ the matrix $p(L)$ commutes with L, hence there exists $h \in H$ such that $p(L) = h(L)$, hence $p = h + (p - h)$ where $h \in H$ and $(p - h) \in J_L$, i.e.,

$$H + J_L = \mathbb{C}[x_1, \ldots, x_{13}].$$ \hspace{1cm} (4.2)

Since (L_1, \ldots, L_{13}) are linearly independent, it follows that $H \cap J_L = \{0\}$, and the sum in (4.2) is a direct sum which proves (4.1).

For the second construction consider a sequence L of four matrices

$$L = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}.$$ \hspace{1cm} (4.3)

It can be verified by direct computations that every matrix that commutes with L a (linear) polynomial in L, hence L is simple. On the other hand the identity matrix I is not a linear combination of L_1, \ldots, L_4, yet in the algebra

$$A := \{p(L) : p \in \mathbb{C}[x_1, \ldots, x_4]\}.$$ Combined with the fact that $L_j L_k = 0$ for all $j, k = 1, \ldots, 4$ we conclude that A is the space of linear polynomials in four variable, its dimension is $5 > 4$ and, by the same argument as above,

$$\dim(\mathbb{C}[x_1, \ldots, x_4]/J_L) = \dim A = 5 < 4.$$ \hspace{1cm} (4.4)

For the next example consider the sequence $\tilde{L} = (L_1, L_2, L_3)$ consisting of the first three matrices in first (4.3). As was mentioned earlier the pairwise product of these matrices are zero, hence

$$A := \{p(\tilde{L}) : p \in \mathbb{C}[x_1, x_2, x_3]\} = \text{span}\{I, L_1, L_2, L_3\}$$

which is 4-dimensional, hence $\dim(\mathbb{C}[x_1, x_2, x_3]/J_{\tilde{L}}) = 4$ and \tilde{L} is non-derogatory. The fourth matrix in (4.3) commutes with the other three but is not a linear combination of the four matrices in the right-hand side of (4.4). The equality (4.4) thus implies that L_4 is not a polynomial in (I, L_1, L_2, L_3) and hence \tilde{L} is not simple.

5 Similarity of commuting sequences

We finish this article with a remark about similarity of commuting d-tuples.

Definition 5.1. Two d-tuples $L := (L_1, \ldots, L_d)$ and $T := (T_1, \ldots, T_d)$ are similar ($L \sim T$) if there exists an invertible matrix S such that

$$T_j = S L_j S^{-1}$$

for all $j = 1, \ldots, d$.

It is easy to see from the Jordan for that a matrix is it is always similar to its transpose. Example 2.1 shows that it is not the case for a d-tuples: $L := (L_1, L_2)$ is not similar to its transpose $L' := (L_1', L_2')$. The following observation was proven in [15]:

Proposition 5.2. A cyclic commuting d-tuple L is similar to a commuting d-tuple T iff $J_L = J_T$ and T is cyclic. We will now present a direct proof of this fact.
Proof. Let u be a cyclic vector for L and v be a cyclic vector for T. Define a mapping $S : \mathbb{C}^N \to \mathbb{C}^N$ by letting

$$S(p(L)u) = p(T)v$$

for every $p \in \mathbb{C}[x]$. Since u is a cyclic vector for L, $\{p(L)u, p \in \mathbb{C}[x]\} = \mathbb{C}^N$ hence S is defined for all $w \in \mathbb{C}^N$. To show that S is well-defined assume that $p_1(L)u = p_2(L)u$. Then $(p_1(L) - p_2(L))u = 0$ and hence $p_1 - p_2 \in J_L$. By assumption this implies $p_1 - p_2 \in J_T$ thus $p_1(T) - p_2(T) = 0$. In particular $p_1(T)v = p_2(T)v$ and S is well defined and linear. Since v is a cyclic vector for T the map S is onto hence S is invertible. Now let $w \in \mathbb{C}^N$. Then there exists a polynomial p such that $w = p(L)u$. Hence

$$SL_jw = SL_jp(L)u = S(x_jp)(L)u = (x_jp)(T)v = T_jS(p(L)u) = T_jSw.$$

Hence $SL_j = T_jS$ for every j and $L \sim T$. \qed

In particular a cyclic commuting d-tuple L is similar to its transpose if and only if L^T is cyclic.

Problem 5.3. What is a good criterion for general d-tuple of commuting matrices to be similar to its transpose? Is it sufficient to assume that $\text{cyc}(L) = \text{cyc}(L^T)$?

Acknowledgement

I would like to thank the referee for the kind words and many useful suggestions.

REFERENCES

