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Abstract  In this paper closed form analytical 
expressions were derived in order to simulate the possible 
action of “halteres” used in the ancient Greek long jump. For 
the sake of simplicity, elementary theory of rigid body 
dynamics is used, which however is capable of simulating 
the motion of a hypothetical rigid jumper for whom the 
Cartesian components of the initial velocity at the take-off 
and the angular velocity of rotating arms are prescribed. 
Particular attention is paid on the initial position and the 
direction of arms’ rotation as well as on the role of the 
amount of masses due to the “halteres”. It was found that if at 
the take-off the upper limbs are upwards, also rotate 
forwards, whereas at the landing they are almost downwards, 
the length of the jump increases as the weight of the halters.   
 

Keywords  Biomechanics, Greek Long Jump, Halteres, 
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1. Introduction 
It is well known that the most important factor for the 

distance travelled by an object is its velocity at take-off, both 
the speed and the angle. The greater the speed at take-off, the 
longer the trajectory of the center of mass will be. The 
aforementioned rule is also applicable to the long jump with 
run-up, despite the fact that the jumper is not a material 
projectile but a flexible mechanism. Nevertheless, the theory 
is fully applicable for the center of mass of the jumper. The 
world record is 8.95 m (wind 0.3 m/s) due to Mike Powell in 
1981 (Tokyo).  

On the other hand, it is well known that dumb-bells 
(halteres) were used during the pentathlon of the Delphic 
games [1,2]. Several vase-paintings show jumpers holding 
weights (halteres) in each hand. According to an existing 
epigram, Phayllos jumped 55 feet (16.28 m) while Chronis 
of Sparta jumped 52 feet (16.66 m) at Olympia during the 
games of 664 B.C. Halteres were probably used in both the 
usual and the standing long jump, but the pattern of their 
motion and their efficiency has been a matter of debate and 

research [1-10].  
This paper tests the hypothesis that in the Greek long jump 

the hands were on “uplift” at the moment of the take-off, and 
probably performed more than one rotation forwards 
(clockwise). The latter comes from previous experience 
gained from studies on a vertically jumping “antigravity” 
(inertial propulsion) mechanism based on rotating masses 
[11-13]. In the latter studies it had been found that the 
maximum jump is produced when the take-off velocities of 
the rotating masses were parallel to the object’s motion. In 
this study the validity of the previous finding will be 
investigated for the long jump with run-up. In contrast, 
standing long jumps are highly depended on the change of 
the geometry of jumper’s body and will be studied in a 
forthcoming paper. 

2. Materials and Methods 

2.1. Assumptions 

The proposed method consists of an analytical mechanical 
model that is based on the following assumptions: 
1) The shape of the jumper’s body (except of the upper limbs: 
arms, forearms and hands) has a mass of value M and 
operates as a non-rotating rigid object during the entire 
motion, from the take-off point until the landing 
(touch-down) point.  
2) The mass of each halter (weight) is embodied to the 
lumped mass of the corresponding upper limbs thus leading 
to an eccentric mass of magnitude m, which rotates at a 
radius r (eccentricity).  
3) The upper limbs are considered to be rigid and rotating at 
a constant angular velocity ω. The value of r is considered to 
be constant. 
4) At the take-off point the upper limbs are upwards and 
vertical (preferably at 0θ = 90 degrees, see Figure 1). 
Therefore, the vector of relative velocity (ωr) of the halteres 
with respect to the jumper’s body is very near to the 
horizontal direction.  
5) At landing, the upper limbs form an angle, Δθ, with the 
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initial position as shown on the right of Figure 1. The 
optimum position, Δθ, is under investigation. 
6) The take-off and landing points are on the same horizontal 
level.  

Based on the above assumptions, it will be clearly shown 
that the use of halteres always leads to a higher jump length 
than what is obtained without them, provided the rotation is 
forwards (clockwise) and the hands are sufficiently in uplift. 

2.2. The Mechanical Model 

Let us consider that the initial (take-off) velocity of the 
mass M (jumper’s body excluding the upper limps) is a 
vector 0V



 of magnitude 0V , which forms an angle 0φ  with 
the horizontal line (Figure 1). Therefore, the components of 

0V


 will be 0 0 0cosu V φ=  and 0 0 0sinv V φ=  in the 
horizontal (x) and the vertical (y) directions, respectively. In 
addition, the lumped mass (m) has an absolute velocity equal 
to ( )0 0sinu rω θ+ , provided the arms are oriented at an 

angle 0θ  as shown on the left of Figure 1. After the take-off 
and before landing, the jumper’s body has a uniform 
horizontal velocity component ( )Mu x t=   [the dot means 

the first derivative of the position Mx  of the centre of mass 
with respect to the time], while the velocity of each lumped 
mass is given by the sum of the moving frame u plus the 
horizontal component of the relative velocity; therefore its 

total value will be ( )( )0 0sinu r tω θ ω+ − .  
While in usual analysis we consider that the horizontal 

velocity component has a constant value 0v , see for 
example [2, p.224], the rotating masses involved in this work 
spoil this tradition. Therefore, the variation of the horizontal 
velocity component is described by the conservation of 
linear momentum in the x-direction: 

( )[ ]
( )

0

0 0 0

2 sin

2 sin

Mu m u r t

Mu m u r

ω θ ω

ω θ

+ + −

= + +
,       (1) 

whence the horizontal velocity u is given by: 

( )
( )[ ]0 0 0

2
sin sin

2
due to the rotational mass

m
u u r t

M m
ω θ θ ω= + − −

+


 (2) 

Considering that M Mu dx dt x= ≡   and then 

integrating (2) in time, the abscissa Mx  of the body is given 
by: 

( )

( )
( ) ( )[ ]{ }

0

0 0 0

2
sin cos cos

2

M

due to rotational mass

x t u t

mr
t t

M m
ω θ θ ω θ

= +

− − −
+



  (3) 

 

Figure 1.  At take-off the jumper is assumed to have the arms at the polar 

position 0
θ

 while the centre of mass M has a given initial velocity of 
components u0 and v0. At landing the arms form an angle Δθ with respect 
to their initial position. 

Then, we apply second Newton’s second law in the 
vertical y-direction (p = vertical component of the total linear 
momentum): 

( )2y

dp
F M m g

dt
= = − +∑           (4) 

Integrating (4) in the interval [0,t] one obtains (note: 

M Mv dy dt y= ≡  ): 

( )
( )[ ] ( ){ }

( )

0

0 0 02 cos cos

2

M v v

m v r t v r

M m gt

ω θ ω ω θ

− +

− − − −

= − +

,   (5) 

whence the vertical velocity of the body is given by: 

( ) ( )
( )

( )0 0

2
cos

2
due to rotational mass

m r
v gt t

M m
v t ω

θ ω= − + −
+



,    (6) 

and the ordinate of the center of mass of the body M 
(excluding the arms) is given by: 
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( )

( )
( )[ ]

2
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sin sin
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M

due to rotational mass

y t
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  (7) 

Obviously, in case of non-rotating masses ( 0ω = ), (3) 
and (7) degenerate to the well-known parabolic trajectory of 
jumper’s centre of mass. In the latter case, the duration T of 
the jump is given by: 

02v
T

g
= ,                  (8) 

while the length L of the jump is given by: 

0 0
0

2u v
L u T

g
= = ,                (9) 

In case of a rigid object with a given magnitude of the 

initial velocity, ( )1 22 2
0 0 0V u v= + , the maximum possible 

length of the shoot is achieved when the inclination angle, 

0φ , becomes equal to 45 degrees ( 0 0 0 2u v V= = ). 
Nevertheless, elite jumpers usually leave the ground at an 
angle of 20 degrees or less.  

2.3. Numerical Implementation 

We consider a typical athlete’s body of weight M = 70kg 
(not including the arms). The compound tissue “arm, 
forearm and hands” is considered to have a mass equal to 

am = 3.216 kg while its center of mass is taken ar  = 0.3198 
m from the shoulder joint (CM-acromion). The entire arm 
length was taken equal to La = 0.7745 m (see [14, p.38]). 
Following [2], for the initial velocities we have chosen 0u =

11 m/s and 0v =  3 m/s.  
Concerning the halteres, the numerical simulation based 

on the above equations – (3), (4) and (7) – deals with halteres 
each of them having a weight mh that varies between 0 and 9 
kg. In case that no halteres exist, we consider that m = 3.216 
kg (minimum value). In general, we consider that the total 
rotating mass per arm is m = 3.216 + mh (kg). Based on the 
aforementioned parameters, and assuming that the halter 
does not essentially extend the arm length, i.e. h ar L≅ , the 
active eccentricity r of the rotating lumped mass in the model 
is calculated by the formula: 

a a h h

a h

m r m r
r

m m
+

=
+

,                  (10) 

whereas its dependence is shown in Table 1. 

Table 1.  Rotating lumped mass (m) and eccentricity (r) involved in the 
analytical mechanical model, for several weights mk of each halter 

Real weight of each 
halter, mh (kg) 

Corresponding lumped parameters (m, r) of 
the mechanical model 

m (kg) r (m) 

0 3.22 0.32 

1 4.22 0.43 

2 5.22 0.49 

3 6.22 0.54 

4 7.22 0.57 

5 8.22 0.60 

6 9.22 0.62 

7 10.22 0.63 

8 11.22 0.64 

9 12.22 0.65 

2.4. Increase of Jump Length 

Demanding the level of the center of mass of the body M 
become zero (yM = 0), (7) is a transcendental equation in t to 
be solved. When the latter is numerically solved, it produces 
the desired elapsed time *T  between take-off and landing 
with *( )T T> , and afterwards, (3) gives the corrected 
length of jump, *L , with *L L> . Therefore, with respect to 
(9), the entire increase in the jump length is given by a sum 
of two terms as follows: 

( ) ( )
( ) ( ){ }

*
0

* *
0 0 0

2
2

sin cos cos

mr
L u T T

M m

T Tω θ θ ω θ

∆ = − + ⋅
+

⋅ − − −  

    (11) 

The first term in (11), ( )*
0u T T− , is due to the 

increased duration of the jump in conjunction with the 
invariable horizontal component of the body velocity (no 
external force is applied towards the x-direction), while the 
second term is clearly due to the rotational (eccentric) mass, 
m.  

The numerical solution of the nonlinear (11) in *T  was 
derived using the fzero function of MATLAB® software. 
Then the jump length *L  was determined through (3). 

The results will be presented mostly in terms of the 
reference angular velocity ref Tω π= , which is 
defined as the constant angular velocity of the arms when 
they rotate by Δθ = π radians (180 degrees) during the 
theoretical jumping period T = 0.6116 seconds (the latter is 
the duration of jump as calculated using (8) and refers to 
absence of rotation).  
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3. Results  

3.1. A possible explanation of Phayllos (16.28 m) and Chronis (16.66 m) Renowned Jumps 

Figure 2 shows the trajectories for several angular velocities of the rotating arms. It can be noticed that the higher the 
weight of each halter is, the most posterior and the longest the jump is. The ideal parabolic trajectory (in blue) is obtained 
setting m = 0 and r = 0 in (3) and (7). Again, the reference angular velocity is given by ref Tω π= , where according to (8) 
is T=0.6116 s; the latter gives refω = 5.14 s-1 ≅ 49.05 rounds per minute. 

 

Figure 2.  Simulated trajectories of the center of mass based on several angular velocities expressed in terms of the reference value 

(
-15.14 srefω = ): ω = [0.5, 1.0, 1.5, 2.0, 2.5, and 3.0] × 5.14 s-1. 

Figure 3, Figure 4, Figure 5 and Figure 6 are similar with the previous one but they refer to graphs of progressively higher 
angular velocities. Again, the higher the weight of each halter is, the most posterior and the longest the jump is.  

 

Figure 3.  Simulated trajectories of the center of mass based on several angular velocities expressed in terms of the reference value (
-15.14 srefω = ): 

ω = [3.5, 4.0, 4.5, 5.0, 5.5, and 6.0] × 5.14 s-1 
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Figure 4.  Simulated trajectories of the center of mass based on several angular velocities expressed in terms of the reference value (
-15.14 srefω = ): 

ω = [6.5, 7.0, 7.5, 8.0, 8.5, and 9.0] × 5.14 s-1 

 

Figure 5. Simulated trajectories of the center of mass based on several angular velocities expressed in terms of the reference value (
-15.14 srefω = ): ω 

= [9.5, 10.0, 10.5, 11.0, 11.5, and 12.0] × 5.14 s-1 
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Figure 6.  Simulated trajectories of the center of mass based on several angular velocities expressed in terms of the reference value (
-15.14 srefω = ): 

ω = [12.5, 13.0, 13.5, 14.0, 14.5, and 15.0] × 5.14 s-1. 

One can notice in Fig.2 up to Fig.6 that, although the 
angular velocity, ω, highly influences the length of jump, its 
effect is not exactly proportional to L. Therefore, there is 
need of further investigation on the details. 

3.2. Details on Realistic Jumps 

Having established a possible theoretical framework for 
the explanation of the renowned ancient Greek jumps, we 
can now study in more details the realistic case of 
approximately half a rotation during the jump. Practically, a 
jumper can conveniently put his arms in the feasible interval 

100 (posterior) 90 (anterior)θ− ≤ ≤  degrees, which 
corresponds to a total of Δθ = 190 degrees, where the angle 
Δθ is shown in Figure 1. Below, results are shown for typical 
cases.  

Again, for the jump of a non-rotating athlete under the 
given velocity components (u0 = 11 m/s, v0 = 3 m/s), (8) 
gives the nominal value of jump period T=0.6116 s, while (9) 
gives the corresponding nominal jump length L = 6.7278 m. 
When considering rotation of the arms starting from θ0 = 90 
degrees, the aforementioned quantities (L and T) increase 
according to Table 2. It should become clear that, Δθ=90 
means that the angular velocity ω has been chosen so as 
within the anticipated duration T the drawn angle fulfills the 
condition: ωT.(180/π) = Δθ = 90deg. Clearly, when the 
rotational angle Δθ increases, the corresponding angular 
velocity ω increases as well. In reality, due to the slight 
increase in jump duration (T* > T) the actual angle Δθ* is 
somehow larger (Δθ* > Δθ) as shown in the bottom part of 
Table 2 (namely 2c).  

The results are summarized as follows: 
1) The rotation of the arms (without weights) at an angular 
velocity ω such as ωT=π/2 (approximately 90 degrees) leads 
to: T* = 0.6207 s and L* = 6.8433 m, while the true rotational 
angle becomes equal to Δθ* = 91.33 degrees (slightly larger 
than 90 degrees). 

2) The rotation of the arms (weight of 2 kg in each hand) at 
an angular velocity ω such as ωT = π/2 (approximately 90 
degrees) leads to: T* = 0.6334s and L* = 7.0077 m, while the 
true rotational angle becomes equal to Δθ* = 93.21 degrees. 
3) The rotation of the arms (weight of 9 kg in each hand) at 
an angular velocity ω such as ωT = π/2 (approximately 90 
degrees) leads to: T* = 0.6709s and L* = 7.5045 m, while the 
true rotational angle becomes equal to Δθ* = 98.72 degrees. 
4) The maximum length of jump (8.4473m) appears for Δθ = 
190 (actually it is Δθ* = 217.49 degrees, see Table 2c), and 
especially for the heavier halter (9 kg).  
5) It can be noticed that when (Δθ = 200 deg) the action of 
the weight stops to be advantageous.  

Furthermore, when performing more than one revolution 
in the jump duration holding a mass mh = 9 kg in each hand, 
for several initial positions, θ0, the situation changes as 
shown in Figure 7. In more details, it can be noticed that if 
the angular velocity ω is chosen so as 200 < ωT.(180/π) = Δθ 
< 450deg (it is reminded that T = 0.6116 s), the length of 
jump becomes smaller than the abovementioned 8.4473 m 
but it obtains another higher value (9.5118 m) when the 
angular velocity becomes close to ωT(180/π) = 580 deg (that 
is 310 degrees after the previous maximum of 190 deg), 
while a third local maximum (10.5716 m) appears at Δθ = 
930 deg, and so on. It is remarkable that the initial position θ0 
= 90 degrees (blue line) always leads to the maximum value 
(at the end of the first half rotation) and has the best 
performance for any amount of weight handheld.  

As can be noticed in Figure 8 (again mh = 9 kg), similar 
graphs are obtained for θ0 = 40 and 30 deg, whereas when θ0 
= 20, 10 and 0 deg the graphs progressively and rapidly 
intersect the horizontal Δθ-axis.  

In conclusion, when the halteres are rotating forwards (in 
the clockwise direction) they always contribute to produce 
jump lengths higher than the reference value of L = 6.7278 m 
(horizontal black line in Figure 7 and Figure 8). 
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Figure 7.  Maximum long jump length versus the actual rotational angle Δθ* from the most posterior position up to the most anterior (blue, cyan, green, 
magenta and red colours correspond to initial positions θ0 = 90, 80, 70, 60 and 50 degrees, respectively); rotation is forwards (in the clockwise direction). 

 

Figure 8.  Zoom of Figure 7, in which more initial positions are added (the circled colors: blue, cyan, green, magenta and red correspond to θ0 = 40, 30, 20, 
10 and 0 degrees) 
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Table 2.  Variation of the jump length, jump duration and the actual rotational angle Δθ* when starting from the vertical posterior position (θ0=90 deg) and 
rotating forwards at a constant angular velocity ω of varying magnitude such as ωT = Δθ(π/180) with T=0.6116 s. 

(a) 

Mass 
of each halter 

(kg) 

LENGTH OF JUMP: *L  (m) 

θ0 = 90 deg 

Δθ = 70 Δθ = 90 Δθ = 110 Δθ = 120 Δθ = 130 Δθ = 150 Δθ = 180 Δθ = 190 Δθ = 200 

m = 0 6.8010 6.8433 6.8889 6.9114 6.9330 6.9709 7.0087 7.0152 7.0187 

m = 2 6.9044 7.0077 7.1187 7.1730 7.2243 7.3118 7.3920 7.4037 7.4083 

m = 5 7.0457 7.2345 7.4363 7.5332 7.6229 7.7698 7.8894 7.9027 7.9043 

m = 9 7.2122 7.5045 7.8135 7.9585 8.0892 8.2925 8.4373 8.4473 8.4418 

Non rotating arms 6.7278 m 

(b)  

Mass 
of each halter 

(kg) 

DURATION OF JUMP: *T (s) 

θ0 = 90 deg 

Δθ = 70 Δθ = 90 Δθ = 110 Δθ = 120 Δθ = 130 Δθ = 150 Δθ = 180 Δθ = 190 Δθ = 200 

m = 0 0.6176 0.6207 0.6237 0.6251 0.6264 0.6282 0.6290 0.6288 0.6282 

m = 2 0.6259 0.6334 0.6407 0.6439 0.6467 0.6505 0.6513 0.6503 0.6488 

m = 5 0.6373 0.6507 0.6635 0.6690 0.6734 0.6788 0.6779 0.6755 0.6724 

m = 9 0.6505 0.6709 0.6897 0.6973 0.7030 0.7088 0.7043 0.7001 0.6950 

Non rotating arms 0.6116 s 

(c)  

Mass 
of each halter 

(kg) 

ACTUAL ROTATIONAL ANGLE: Δθ* (deg) 

θ0 = 90 deg 

Δθ = 70 Δθ = 90 Δθ = 110 Δθ = 120 Δθ = 130 Δθ = 150 Δθ = 180 Δθ = 190 Δθ = 200 

m = 0 70.68 91.33 112.18 122.65 133.13 154.07 185.12 195.33 205.43 

m = 2 71.64 93.21 115.23 126.34 137.46 159.54 191.69 202.03 212.16 

m = 5 72.93 95.75 119.34 131.25 143.14 166.47 199.50 209.85 219.87 

m = 9 74.45 98.72 124.05 136.80 149.43 173.83 207.26 217.49 227.27 

Finally, if backwards (anti-clockwise) direction is considered, the results of Figure 9 are derived for the interval 0 < Δθ < 
270 deg. One can notice that the backwards rotation leads to either a small improvement or mostly to a decrease of the jump 
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length. Again, the horizontal dotted line corresponds to the reference value of L = 6.7278 m.  

 

Figure 9.  Comparison between forwards (cw: clockwise, upper part) and backwards (acw: anti-clockwise, lower part) concerning the maximum length of 
jump versus the actual rotational angle Δθ* (blue, cyan, green, magenta and red colors correspond to initial positions θ0 = 90, 80, 70, 60 and 50 degrees, 
respectively). Regular lines correspond to forwards rotation (posterior-to-anterior) whereas thick crossed  lines (×) correspond to backwards rotation 
(anterior-to-posterior) 

3.3. Sensitivity Analysis 

Concerning the (initial) angle at take-off, θ0, (see, Fig. 1), its effect on the length of jump was previously illustrated in both 
Fig. 7 and Fig. 8. However, these results were obtained for the particular case in which the weight of the halter in each hand 
was equal to mh = 9 kg. 

 

Figure 10.  Maximum long jump length versus the actual rotational angle Δθ* for several halter weights (0, 2, 5 and 9 kg), as well as two discrete arm 
positions (θ0 = 90, 50 degrees) at take-off; rotation is forwards 
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Figure 11.  The influence of the angle between arm and forearm (at elbow) on (i) the eccentricity, r, of the center of arm for the entire arm [Top], as well as 
(ii) on the coefficient 2mr(M+2m) [Bottom] 

In the sequence, we perform a sensitivity analysis to see 
whether the same tendency appears for smaller halter 
weights. In fact, Fig. 10 shows that the more heavy the halter 
the greater the length of jump. Moreover, with some minor 
exceptions that appear for small values of the actual 
rotational angle, Δθ*, the larger the take-off angle (θ0=90deg: 
thickest lines) the greater the length of jump.  

Remark: It is worthy to explain that the above-mentioned 
small values of the angle between take-off and landing, Δθ*, 
(when unfortunately occur) correspond to small values of 
angular velocity, ω, and also to large values of linear 
momentum of the halters at landing in the forward horizontal 
direction; in other words, a small rotation of the arms does 
not allow for the linear momentum to pass from the halter to 
the jumper’s body. In contrast, when for example θ0=90deg, 
the linear momentum of halters at take-off is horizontal and 
forwards, and if the angular velocity is chosen so as the angle 
Δθ* be about 180 degrees, the horizontal component of 
linear momentum of the halter at landing is backwards; 
therefore, due to the momentum conservation the jumper’s 
body obtains this difference of momenta, that is between 
forward (at take-off) and backward (at landing) ones. 

3.4. The Effect of Anthropometry of Human Body 

So far we have considered a typical jumper’s body for 
which the angle between the arm and forearm equals to α = 
180 degrees; in other words, the entire arm was assumed to 
be ideally straight. If, however, the before-mentioned angle 
is smaller than 180 degrees (α < 180), then (10) is no further 
valid as is. Based on the anthropometry of the human body 
(the weights of all three: arm, forearm and hand were split 
according to [14, p.3], and the location of centers of mass 
was expressed as a ratio of the distance from the proximal 

end according to [14, p.5]), the eccentricity r is easily found 
to depend on both the angle α, as well as on the halter weight, 
mh, as shown in Fig. 11 (top). In the bottom of the same 
figure one can also found the result of calculations of the 
critical quantity, ( )2 2mr M m+ , which appears in (11); 
for the latter, the halter’s weight, mh, is seen to be more 
critical than what the elbow angle, α, is.  

4. Discussion 
There are four main components of the long jump: the 

approach run, the last two strides, takeoff, action in the air, 
and landing. Speed in the run-up, or approach and a high leap 
off the board are the fundamentals of success. Because speed 
is such an important factor of the approach, it is not 
surprising that many long jumpers also compete successfully 
in sprints.  

Nevertheless, in addition to the initial velocity, another 
factor is the impulse produced by the moving members, 
which is related to additional energy released from jumper’s 
chemical energy.  

Previous studies concern mostly the standing jump and 
suggest that “halteres were swung back and forth by the 
jumper before take-off, thrust forwards during the first part 
of the flight, and finally swung backwards just before 
landing, as depicted in a variety of vase paintings” [9]. Most 
of the evidence concerning the jumping technique in ancient 
Greece is in favor of the standing long jump (multiple 
jumps).  

Although the previous writings are absolutely reasonable, 
however the assumption of a constant angular velocity used 
in this study (like a mechanical motor) offers a convenient 
tool of thoughts for commenting on the significance of the 
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synchronization of the rotating arms on the achieved jump 
length (similar thoughts can be also extended to the rotating 
legs).  

In brief, the results of this study suggest that: 
1) When halteres are used for the highest possible (in the 
sense of jumper’s comfort) angular path (Δθ = 190 degrees 
owing the highest angular velocity) the maximum jump 
length is achieved.  
2) Forwards rotation is advantageous while backwards one is 
disadvantageous. 
3) Whatever the initial position θ0 of the halteres at take-off 
is, the forwards rotation leads to an increased jump length.  
For a specific angular velocity, the higher the weight of each 
halter, the longest the jumper remains in the air and the 
longest the jump is.  
4) The true reason of the increased length of jump is that the 
arm rotation causes an increase in the take-off velocity of the 
center of mass of the entire jumper’s body (including arms): 
see Appendix A.  

As mentioned above, it is not sufficient only to increase 
the rotation of the arms but to put them at a proper position at 
the instance of take-off. In general, the ‘secret’ point is to 
start with linear momentum of the halter, which is fully given 
to increase the linear momentum of jumper’s body.  

It is worthy to mention that in mid-1950s a very similar 
idea was patented by Norman Dean (a civil service employee 
residing in Washington DC) who proposed the use of two 
contra-rotating eccentric masses in order to convert rotary 
motion to unidirectional motion; see also: 
http://en.wikipedia.org/wiki/Dean_drive. A detailed 
mechanical analysis of the latter renowned mechanism in the 
vertical direction has been recently reported [11-13]; there it 
was found that the maximum length of vertical trajectory is 
achieved only when the initial position of the rotating rods is 
the horizontal one. The aforementioned finding was 
extended in this paper as follows: In order to achieve the 
maximum length of jump the rotating arms must be 
perpendicular to the jumper’s motion.  

The weaknesses of the proposed model are as follows: 
1) The action of the air was not taken into consideration. 
2) The angular velocity, from take-off until landing, was 
considered to be constant. Patterns of variable angular 
velocity, although possible to be treated, are not included in 
this study. 
3) The body of the jumper (of mass M) was assumed to be 
rigid and non rotating; therefore the action of the legs and the 
rotation of the torso were not considered.  
4) Body changes were not considered. It is reminded that 
except of the horizontal length of points along the parabolic 
trajectory (as used in this paper), we had to add (i) the 
horizontal distance between the front edge of the take-off 
board and the position of the jumper’s center of gravity at the 
moment of take-off, as well as (ii) the horizontal distance 
between the jumper’s center of gravity at the instant the 
jumper makes contact with the ground on landing and the 
mark on the landing area that is used to define the overall 
length of the jump (details can be found in [2]). 

5) The length of jump refers to the motion of the center of 
mass of the abovementioned rigid mass M. In practice, the 
center of mass of the body is about 0.9m above the ground 
level and must be taken into consideration.  
6) The magnitude of the induced forces in the joints (mω2r) 
has not been calculated. However, even if they are high 
enough (particularly at high angular velocities), future 
experiments could be conducted using suitable exoskeletons 
to avoid harmful effects. 
7) No experimental measurements have been performed. It is 
suspected that taking off at 11.0 m/s with heavy weights of 9 
kg (however mentioned in literature) in each hand is 
probably outside the human capacities thus not possible, nor 
is a safe landing after a flight phase of 15 meters. Also, 
multiple rotations in the airborn phase are rather impossible 
to accomplish, and if so, they would make it impossible to 
perform a landing in balance.  

Despite the above weaknesses, this study is a thorough 
investigation on the consequences of arm rotation and can be 
easily extended from jumps with run-up, as those studied in 
this paper, to ones from standstill (namely, to standing long 
jumps) where experimental data are available [10]. Also, the 
main idea of this paper can be easily incorporated into more 
advanced third party biomechanical models in which full 
dynamics of the long jump is considered [15]. 

5. Conclusion 
This study extends the idea of the double-arm style of 

take-off, which works by moving both arms in a vertical 
direction as the competitor takes off. So far it was known that 
the latter produces a high hip height and a large vertical 
impulse. Based on theoretical considerations, this study 
shows that when halteres rotate forwards they always 
achieve an increase of the length of jump. Therefore, if 
ancient Greeks could technically apply extremely high 
angular velocities, such as 12 rotations of their straightened 
arms during the period of the jump, from a theoretical point 
of view this hypothetical event would lead to a length of 
jump of the order of 15 meters or still higher. Alternatively, 
the weights could be driven by the jumper to follow 
circumferences of smaller radius but then a still larger 
number of rotations than twelve would be necessary in order 
to produce an equivalent action. 

APPENDIX  

Justification of the mechanical behavior 

In the simulations, the velocity (speed and direction) of the 
jumper’s body is always the same, and the angular velocity 
of the jumper’s arms at the instant of takeoff and the mass of 
the halteres are increased. Increasing the angular velocity of 
the arms or the mass of the halteres means that the velocity of 
the jumper’s centre of mass at the instant of takeoff (i.e. body 
+ arms + halteres) is different in each simulation. That is, in 
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the simulations where the arms and halteres are rotating very 
fast clockwise at takeoff, the takeoff velocity of the athlete's 
center of mass is actually much greater than when the 
jumper’s arms+halteres are not rotating. The increase in the 
takeoff velocity of the jumper’s centre of mass is the true 
source of the increase in jump distance in these simulations.  

The velocity of the jumper’s center of mass at the instant 
of takeoff can be calculated from the vector sum of the linear 
momentum of the jumper’s body at the instant of takeoff and 
the linear momentum of jumper’s arms and halteres at the 
instant of takeoff. 

When the jumper has no halteres (i.e. m = 3.2 kg) and the 
arms are not rotating (ω = 0), the linear momentum of the 
athlete's center of mass at the instant of takeoff is: 

Horizontal momentum: (70 kg × 11 m/s) + (6.4 kg × 11 
m/s) 

Vertical momentum: (70 kg × 3 m/s) + (6.4 kg × 3 m/s) 
Total momentum: 76.4 kg at 11.4 m/s and 15.3 degrees to 

horizontal.  
That is, the takeoff velocity of the athlete's center of mass 

is 11.4 m/s at 15.3 degrees, and therefore the jump distance is 
6.75 m. 

Now consider the athlete when the arms are rotating 
clockwise at 1.0 times the reference value (ω = 5.14 rad/s) 
with 9 kg halteres (i.e. m = 12.2 kg). The linear momentum 
of the athlete's center of mass at the instant of takeoff is then 

Horizontal momentum: (70 kg × 11 m/s) + [2 × 12.22 kg × 
(11 m/s + 5.14 rad/s × 0.65 m)] 

Vertical momentum: (70 kg × 3 m/s) 
Total momentum: 76.4 kg at 14.92 m/s and 10.62 degrees 

to horizontal. 
That is, the takeoff velocity of the jumper’s center of mass 

is 14.92 m/s at 10.62 degrees, and therefore the jump 
distance is 8.23 m. 
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